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Dankwoord

Na ruim vier jaar is het dan zover, er is een proefschrift. Het schrijven
van een proefschrift is een individuele bezigheid waarmee wordt aangetoond
dat je in staat bent zelfstandig onderzoek te verrichten. Als ik heel eerlijk
ben, dan past dat niet zo goed bij me. Hoewel ik het erg leuk vind om
onderzoek te doen en zelfstandig onderzoek doen in ieder geval zorgt dat
er geen meningsverschillen zijn, vind ik samenwerken met anderen juist erg
leuk. De discussies zijn dan misschien zelfs het leukst aan dat samenwerken.

Gelukkig heb ik de afgelopen paar jaar dan ook samengewerkt met heel
wat mensen, binnen de leerstoel, maar zeker ook daarbuiten. Allereerst natu-
urlijk Maurice van Keulen, die me niet alleen gevraagd heeft om te solliciteren
naar een plek bij de Database groep, maar met wie ik vervolgens ook bin-
nen het MultimediaN project aan onzekerheid in databases heb gewerkt.
De wekelijkse besprekingen, die soms niet zonder meningsverschillen waren,
waren elke week een moment om naar uit te kijken. Peter Apers, die mij heeft
aangenomen binnen de groep en hoewel hij niet vaak binnen de groep aan-
wezig was, tijdens besprekingen toch altijd precies wist waar mijn onderzoek
over ging, maar belangrijker nog, de juiste vragen wist te stellen.

Tijdens de afgelopen jaren heb ik twee fijne kamergenoten gehad. De
eerste, en langste, periode was dat Joeri. De wekelijkse quiz, het uitwisselen
van recepten en de sfeer in de kamer hebben zeker bijgedragen aan het plezier
waarmee ik naar mijn werk ging. Riham, mijn tweede kamergenoot, met wie
ik zoveel mogelijk Nederlands heb geoefend en die inmiddels hopelijk gewend
is aan mijn, soms enigszins gemene grapjes. Of course, I could have written
this in English, but I am most confident that she can actually read the Dutch
text as well.

Hoewel ik regelmatig moeite had om sprekers te vinden voor de Almost
Weekend Meetings, of de Secret AIO Meetings, zoals ze ook wel genoemd
worden, waren deze bijeenkomsten altijd een groot succes. Uiteraard is dat
helemaal dankzij alle mede aio’s van de DB groep. Ook de rest van de
database groep heeft zeker bijgedragen aan de gezellige tijd, zowel tijdens
pauzes, als gewoon tussendoor.
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Chapter 1

Introduction

Many of todays applications work with vast amounts of data. Take, for
example, Sensor networks. These networks usually produce a steady stream
of data for each of the sensors. The data from these sensors is stored. Next,
this data is processed, where the data is usually aggregated and also this
aggregated data is stored. One of the problems with sensor data is, that
sensors are inherently uncertain. The data they produce can contain errors
due to numerous causes. The reading from the sensor itself can be incorrect
or the transmission may have introduced errors. The first is even almost a
certainty, since most producers of sensors indicate the level of certainty of
their sensors.

A database management system (DBMS) is responsible for storing data.
However, the data stored in such a system needs to be correct at least ac-
cording to the user of the DBMS at data insertion time. Although incorrect
information can, of course, be stored in such a system, a user that later on
retrieves data from the system will assume correctness of the data. In case of
the sensor data, this can cause a problem, as most data will, to some extent,
be incorrect, or at least imprecise.

In light of applications that use uncertain data, the DBMS should be able
to store, manage and query uncertain data. The uncertainty associated with
the data should be considered metadata, that is propagated whenever the
user poses a query. This uncertainty can be stored in the form of confidence
scores. Special operators should be available to allow the user direct access
to these confidence scores, not only for querying, but also for manipulation
of the scores.

Another application that can benefit from databases capable of storing
uncertain data, are ambient database systems. Hardware becomes faster,
cheaper and smaller on a daily basis. As a result Ambient database systems
are becoming a reality. These database systems have a need to be as human

1



2 CHAPTER 1. INTRODUCTION

Possible
query

answer

Possible
query

answer

Real worldReal world

Possible
query

answer

User
Feedback

External
DBs

External
DBs

query

observations

observations

ob
se

rv
at

io
ns possible worlds

Database

data
integration

Figure 1.1: Information (Integration) Cycle

friendly as possible. Consider a PDA with telephone capabilities containing
an address book application. All PDAs nowadays have synchronization capa-
bilities, but also integration capabilities are supported. It would be infeasible
to ask the owner of the PDA every time another PDA comes within range
to manually check integration results. Instead, the address book application
should be able to integrate the data itself and, if in doubt, store this uncer-
tainty. At a later time, if the user wants to call somebody from the address
book, all possible phone numbers are presented. If, at that time, the user
discovers an error in the integration result, a feedback mechanism should be
available to allow that particular possibility to be deleted.

In this thesis we use information integration as an application for uncer-
tain data, much like the address book application presented. Information in
an integration application evolves according to an information cycle. First,
the data from several source documents is integrated into one integrated
document. The integration approach taken in this thesis, is to postpone
decisions on integration if there is uncertainty about equality of elements.
This uncertainty introduces possible states of the database, called possible
worlds. Next, a user of the integration application can query the integrated
document. In an uncertain document, the query is posed in each of the pos-
sible worlds and the results from all worlds are grouped by object in the real
world. The result of this query is presented to the user, and using a feedback
technique introduced in Chapter 6, he can indicate if (part of) the result
corresponds to the real world. This feedback then updates the data stored
in the database according to the feedback statement. This information cycle
shown in figure 1.1 shows how the possible world approach is used in the
integration process and how feedback is processed. Using this information
cycle, the integration process becomes unattended. This means that during
the actual integration of data no human involvement is needed.



1.1. INFORMATION INTEGRATION 3

1.1 Information Integration

The area of information integration has been a topic of interest for many
years. Numerous projects on the topic have been initiated, all focusing on
different aspects, or approaching the problem from a different angle.

One of the challenges in information integration is finding correspon-
dences between schemas of information sources. The last years, combining
techniques, especially in integration of schemas has proven to be successful
[Doa02]. After finding the correspondences in schemas, the actual data val-
ues have to be transformed to the new schema, and integrated into the new
document. If two overlapping information sources are integrated, duplicate
items will likely be present. These duplicates have to be eliminated. In order
to accomplish this duplicate elimination, they first have to be found. Al-
though this may sound like an easy task, this is not the case. The problem of
finding these duplicates is known as entity resolution, record linkage or data
cleaning.

1.1.1 Uncertain and Probabilistic Data

Earlier in this chapter we showed that there are many applications that deal
with uncertain data in one way or another. There are many ways uncertainty
can be dealt with. The way we use in this thesis is by specifying different
possibilities for individual elements. The possibilities are mutually exclusive
and are assigned a probability that indicates their likelihood of being the
actual instance of that element. In this way, probability theory can be used
to reason about possibilities, relations and queries.

1.2 Research questions

The previous sections illustrate that many applications benefit from allowing
data to be uncertain. Integrating this uncertainty into a database manage-
ment system and making it the responsibility of that system to maintain,
propagate and manipulate the uncertainty, is the main research challenge in
this work. A first research question that is addressed in this work, therefore
is

Which additions to existing data models are necessary to be able to support
uncertain data resulting from information integration?

In order to correctly work with the uncertainty associated with the data, the
semantical foundation has to be defined. In addition, using this semantical
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foundation, the proposed model has to be complete and closed. Not only
does the model need to be complete and closed, but also the results that are
generated from queries and the queries themselves have to be intuitive.

The research question that is derived is

Which semantic foundation is needed to support intuitive querying on uncer-
tain data?

In many research areas measures, testing frameworks and datasets are used
to compare results from different projects with each other. Also comparing
the results of one system from run to run, is possible when standardized
measuring tools are available. We pose the following question to contribute
to the solution of this problem

How can we measure uncertainty contained in documents and answer quality?

As an application for uncertain data, information integration seems promis-
ing. Especially, since it could potentially contribute to automating the pro-
cess, or at least postponing user involvement. From the application side of
uncertain data, we therefore have the following research question

How can uncertain database technology theoretically be applied in data inte-
gration?

If the user is no longer involved during the actual integration process, deci-
sions on equality of elements is postponed. This results in large integrated
documents. Therefore, the last research question we pose is

How can uncertain data be practically used in data integration?

1.3 Thesis structure

We start by giving an overview of the related work on both uncertain data
and databases and one of its possible applications, information integration.

In Chapter 3 we introduce the probabilistic XML data model, enabling
the system to capture probabilities associated with the data, mutual exclu-
siveness and dependencies. First we defined the semantics used in the proba-
bilistic XML data model, which is that of possible worlds. We also introduce
two new quality measures for uncertain data. The first measure, uncertainty
density captures the amount of uncertainty in the document, without taking
into account the probabilities associated with the data. The second measure,
answer decisiveness does take these probabilities into account and indicates
to what extent answers to queries are discriminative. In other words, how
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easy is it to choose between alternatives for elements based on the probabili-
ties and the number of alternatives. These measures can be used to compare
probabilistic documents and even systems. This chapter is largely based on
work presented in [KKA05, dKvK07].

Chapter 4 deals with querying the probabilistic XML document, using
the possible world semantics defined in Chapter 3. We show that some
operations work across possible worlds instead of just combining the results
from all possible worlds into one result. We also introduce new versions of
precision and recall, adjusted to the setting of uncertain data. The traditional
versions of precision and recall are not suitable for handling alternatives for
documents. These new versions take into account the probability that is
associated with a data item. Incorrect answers are only taking into account
to the extent of their associated probability.

As one of the possible applications of uncertain data, information integra-
tion will be discussed in Chapter 5. First, we look at integration at schema
level and then we use uncertain data to integrate at the data level. By stor-
ing uncertainty, the user of the integration process is no longer needed at
integration time, but his involvement is postponed until query time.

The integration application produces documents that can become quite
large. In Chapter 6 we introduce two methods to reduce the amount of uncer-
tainty and with that, also the size of the resulting integrated document. The
first method involves introducing world knowledge into the application. As a
result, many of the possibilities in the resulting document become impossible.
By keeping these knowledge rules as generic as possible, this method can be
used across different domains. The second method introduced in this chapter
is allowing the user of the system to give feedback on the results of a query.
Any possible world contradicting the feedback statement is removed from
the integrated document. Parts of this chapter are based on work presented
in [KKA05].

In Chapter 7 we summarize and conclude this thesis. Also, we show future
directions for research and provide some initial thoughts on these research
questions.
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Chapter 2

Related Research

2.1 Uncertain Data Models and Systems

In this section, we will visit existing projects and proposals for uncertain
data. Different data models, such as relational and semistructured, as well
as different uncertainty models, such as probabilistic and possibilistic are
discussed. We also point to some other areas of interest in the uncertain
data community.

2.1.1 Relational data

Several models for uncertain data have been proposed over the years. Initial
efforts all focused on relational data [BGMP90] and also currently efforts are
being made in the relational setting [LLRS97, BSHW06, BDM+05, CSP05,
AKO07a]. With relational data models, two methods to associate confidences
with data are commonly used. The first method associates the confidence
scores with individual attributes [BGMP90], whereas the second method as-
sociates these confidence scores with entire tuples [BSHW06].

Confidences associated with tuple level is also referred to as Type-1 un-
certainty, whereas confidences associated with attribute level is referred to
as Type-2 uncertainty. Type-1 and Type-2 uncertainty and a comparison
between the two are further discussed in Chapter 3.

Table 2.1 shows examples of uncertain relational data using the two types
of uncertainty. The first table uses attribute level uncertainty, whereas the
second table uses tuple level uncertainty. Omitted confidence scores in the
tables indicate a score of 1. Both tables contain address book information
on persons named John and Amy and both capture uncertainty about their
room and phone number. Table 2.1(a) uses Type-2 uncertainty and captures
the fact that John either occupies room 3035 (with probability 40%), or

7
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(a) Attribute level uncertainty

name room phone

John 3035 [.4] 1234
3037 [.6]

Amy 3122 [.6] 4321 [.6]
3120 [.4] 5678 [.4]

(b) Tuple level uncertainty

name room phone

John 3035 1234 .4
3037 .6

Amy 3122 4321 .6
3120 5678 .4

Table 2.1: Attribute and Tuple level uncertainty

3037 (with probability 60%), but certainly has phone number 1234. Amy, in
this table, either occupies room 3122 (with probability 60%), or room 3120
(with probability 40%) and independently of the room has phone number
4321 (with probability 60%) or 5678 (with probability 40%). Table 2.1(b)
uses Type-1 uncertainty and contains the same choices for room numbers
and phone numbers for both persons, but in this case the room number and
phone number for Amy are dependent on each other. If Amy occupies room
3122, then her phone number is 4321 analogously, if she occupies room 3120,
then her room number is 5678. Observe that with tuple level uncertainty
the expressiveness is larger, since dependencies between attributes can be
expressed. This is impossible in the case of attribute level uncertainty. In
the case of type-1 uncertainty it is, of course, possible to express the situation
where both attributes are independent by enumerating all possibilities.

2.1.2 Semistructured data

Semistructured data, and in particular XML has also been used as a data
model for uncertain data [HGS03, AS06]. As with the relational based mod-
els, there are two basic strategies. The first strategy is event based un-
certainty, where choices for particular alternatives are based on specified
events [AS06, HGS03]. The occurence of an event validates a certain part
of the tree and invalidates the remainder of the tree. Using these events,
possible worlds are created. Each combination for all events selects one of
the possible worlds. In event based models, the events are independent of
each other.

The other strategy for semistructured models is the choice point based
uncertainty. With this strategy, at specific points in the tree a choice between
the children has to be made. Choosing one child node, and as a result an
entire subtree, invalidates the other child nodes. As with the event based
strategy, possible worlds can be selected by choosing specific child nodes of
choice points. The model presented in this thesis is based on the choice point



2.1. UNCERTAIN DATA MODELS AND SYSTEMS 9

strategy.
Figure 2.1.2 contains two XML documents containing identical informa-

tion. The first document (Figure 2.1(a)) is a Fuzzy Tree according to [AS06],
whereas the second tree (Figure 2.1(b)) is a probabilistic XML document
according to the PXML model according of [HGS03]. Both XML documents
are event based. Both documents contain address book information for a
person named John. For this person, only a phone number, either 1234, or
4321 is stored. Figure 2.1(a) contains one event, called e. The name in the
document is independent of the event and therefore, the name element is
always present. In other words, the name element is associated with event
true and therefore always present. If e is true, then the phone number is
1234, otherwise phone number is 4321. The likelihood of e being true is 30%.
The same information captured in a choice point based model is presented
in Figure 2.2. At each choice point, indicated by ▽ one of the child elements
can be chosen. The probability of each of the child nodes is given at the edge
to that child node.

In Figure 2.1(b) the PXML of [HGS03], an event based model, is shown.
In addition to the tree, the functions lch, card and ℘ are provided. Function
lch shows the child nodes of any given node o in the tree and associates a
label l with the edge. Here, node S has a person node P. Function card gives
the cardinality interval for each of the nodes in the tree, based on the labels
of the edges. In this case, all cardinalities are exactly one. For node P this
means that there is exactly one name edge, as well as exactly one phone edge.
The final function ℘ provides probabilities for nodes that are uncertain. In
this case, only T1 and T2 are uncertain. Since the cardinality constraint
dictates that T1 and T2 are mutually exclusive, the probabilities for T1 and
T2 add up to 1.

2.1.3 Confidence scores

The confidence scores associated with the data in uncertain databases, can
be based on different paradigms. In many works, including this one, a prob-
abilistic paradigm is used, but alternatively the possibilistic paradigm can
be used, or even a more elaborate form such as cisets.

Probabilitic approach

With the probabilistic paradigm, all confidence scores are regarded as prob-
abilities and are propagated as such. The result is, that at any given time,
the total probability mass, or the sum of all probabilities, can’t exceed 1.
When calculating this probability mass, several things have to be taken into
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account, such as local vs. global probabilities and dependencies. Type-1
probabilities, for example, are global probabilities when no joins are used.
Type-2 probabilities on the other hand, are local to the tuple and only when
alternatives for all of the attributes in a tuple are chosen, can the global,
Type-1 probability can be calculated. Most data models and systems using
probabilities assume independency among the tuples, but queries can create
dependencies. If these dependencies are not taken into account, the calcu-
lated probability is incorrect. Systems using the probabilistic approach are
MystiQ [BDM+05] and Trio [Wid05]. Although the Trio system can be used
with any other kind of paradigm, the standard paradigm used is probabilistic.

The data models and systems discussed so far all support discrete prob-
abilistic distributions. Continuous distributions are another possibility for
storing uncertainty about data. Here, the distribution itself also represents
the data value of an attribute. Continuous uncertainty is supported by the
ORION system [CSP05, CP05]. Consider, for example, a sensor application,
that stores the data coming from a temperature sensor. Most producers of
such sensors state that the sensor can report a temperature with a predefined
uncertainty. We assume for this particular example that the actual temper-
ature is normal distributed with the reported temperature as its mean and
a static maximum deviation of 1◦C.

Possibilities

Instead of probabilistic, a possibilistic approach [BP04] can be taken for
confidence scores. With possibility theory [Zad78] no assumptions have to
be made about the dependency or independency of two uncertain attributes,
tuples or elements. In addition, it is possible to express the possibility of an
event occurring, without knowing its exact probability. In possibility theory,
the maximum confidence score of any data element can’t exceed 1, but there
is no upper bound on the sum of the confidence scores.

Cisets

A third method to model uncertainty about data, is by means of confidence
index sets, or cisets [Nai03]. A ciset is a pair < α, β > with α, β ∈ [0, 1]. A
ciset can be thought of as a mapping F : S → C, where S is a set and F
assigns to each element x ∈ S two degrees of confidence α and β. The degree
α is a confidence value that specifies the confidence of x ∈ Sc, with Sc the
complement of S. Confidence value β specifies the confidence of x ∈ S. For
each < α, β > holds that 0 ≤ α + β ≤ 2. This indicates the evidence that
a certain x ∈ S is not used to support x ∈ Sc. One observation that can be
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made, is that if the ciset space is restricted according to α = 1−β, cisets are
reduced to the probabilistic paradigm. In this way, we can regard cisets to
be a generalization of probability theory. With cisets, we can simultaneously
store evidence in favor of and contradictory with an element, or event.

2.1.4 Prominent Projects

There are some prominent projects in the area of uncertain databases, some
of which we already referred to earlier. Here, we give an overview of these
projects, including their characteristics. Currently probably the best known,
although certainly not the first project on uncertain data is Trio [Wid05,
MTdK+07, BSHW06]. In this project at Stanford University, a database is
developed supporting both uncertainty and lineage1 as first class citizens in
the system. Trio uses a relational data model, with a probabilistic approach.
Although, as mentioned earlier, the user of Trio is free in plugging in its own
arithmatic for confidence computation.

A project more focused on the complexity, efficiency and optimization
of querying uncertain data is MYSTIQ at the University of Washington
[BDM+05, DS07, RDS06]. This project is also based on the relational model
and uses a probabilistic approach.

An earlier project from the University of Maryland is ProbVIEW [LLRS97].
ProbView, as Trio and MYSTIQ, is a relational database and uses a prob-
abilistic approach. From the same university, a couple of years later, came
PXML [HGS03], an XML based probabilistic database.

The last project we mention here, is MayBMS at Cornell University [AKO07b].
MayBMS is a relational system that uses a finite world-set decomposition.
The confidence computation in MayBMS is based on probability theory.

2.2 Data Inconsistency

Repairing data inconsistencies can also be regarded as creating uncertainty in
the data [Wij07]. Consider for example Table 2.2. According to the schema
the name is a key, indicated by underlining the attribute. Since name is a
key, it cannot be replicated in the table. We immediately see a violation of
this constraint, because there are two instances where the name is “John”. A
possible solution to this problem is creating two mutually exclusive possible
worlds. One where (John, 3035, 1234) exists, and one where (John, 3037,
8765) exists.

1Lineage indicates where the data came from
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name room phone

John 3035 1234
John 3037 8765
Amy 3122 4321
Anna 3120 5678

Table 2.2: Inconsistent Data

2.3 Querying Uncertain Data

In databases supporting uncertainty that are based on the relational model,
SQL is the standard query language. Of course, SQL is extended with sup-
port for querying, updating and manipulating probabilities. Also, regular
SQL expressions are rewritten to cope with probabilities associated with the
data [BSHW06, MTdK+07, AKO07b, RDS06, DS96]. In Trio, for example,
the system rewrites a TriQL2 statement to a regular SQL statement. All
uncertainty associated with the data is stored in an underlying regular re-
lational database. In case of Trio, even the lineage is stored in the same
relational database. The Trio interface hides this Trio metadata from the
user of the Trio system. Semantics for querying nowadays is most commonly
the possible world semantics. In Chapter 4 we will elaborate on semantics
and querying.

2.4 Complexity and Optimization

Directly related to querying of uncertain data, is studying the time complex-
ity and optimizing queries for uncertain data. The complexity problem in
querying uncertain data does not come from the data itself, but from the con-
fidence computation that is needed to calculate confidences on query results.
Currently, most work in the area of complexity analysis is being done in the
MystiQ project [BDM+05, RDS06, DS07]. For purely hierarchical queries
like3

Q(w) :- R(x), S(x,w,y), T(x,y,z),K(x,v,w)

In this example Q is the query with parameter w. R, S, T and K are
subqueries and v, x, y, z are parameters.

2Trio Query Language
3In DataLOG notation. Example taken from [Suc, Suc06].
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(a) Hierarchical Query (b) Non hierarchical Query

Figure 2.3: Hierarchical and non-hierarchical query

The complexity of the query is PTIME, but as soon as queries are non hier-
archical, it becomes #P -complete [RDS06]. As is, for example, the following
query4:

Q :- R(x), S(x, y), T(y)

The fact that the first query is hierarchical and the second isn’t, can be easily
observed in Figure 2.3. Ellipses indicate parameters in the query, the name
of the parameter is shown in the ellipse. Names of subqueries are shown in
black circles. As long as ellipses don’t partially overlap, but merely subsume
another ellipse, the query is hierarchical. This is, because if ellipses partially
overlap subqueries don’t use a subset of each others parameters.

Currently, the Trio solution to the problem of expensive confidence com-
putation is to postpone confidence computation as much as possible until the
user needs the confidences. Since the lineage of the data is stored in Trio,
confidence computation can be postponed until needed.

2.5 Information Integration

The amount of work on information integration is enormous. The topic has
been studied for several decades already and will remain a research question
for many more to come. This is due to the semantics captured by the schema.
This semantics is impossible to determine by a machine and human involve-
ment will always be necesarry to make the final decision about equality of
schema elements. The first challenge in integration, is matching the elements
from one data source onto the element from another data source. The result
of this process is a mapping between the two documents relating not only
the elements, but also providing mapping functions that indicate how the
data is transformed from one document to the other. See Figure 2.4 for a
schematic illustration.

4Example taken from [Suc, Suc06]



2.5. INFORMATION INTEGRATION 15

Schema A

Firstname

Lastname

Phone

Room

Schema B

Phone

Email

Name

Room

B.Room = A.Room
B.Name = A.Firstname + <space> + A.Lastname
B.Phone = A.Phone
B.Email = NULL

Figure 2.4: Schematic representation of mapping result

A recent overview of integration focused more on schema integration is
given in [DH05]. The Learning Source Descriptions (LSD) project [DDH01,
Doa02, DDH03] from the same authors is widely recognized as a big step
forward in the schema integration field. In this project, base learners, are
trained for specific parts of semantical domains. A meta learner is trained
on the results of the base learners. As a result, the meta learner can combine
the results of the base learners, based on the specific schemas that are being
integrated.

One of the main problems in data integration, is finding mappings be-
tween elements from two (or more) schemas. Different projects in both re-
lational and semistructured settings have been initiated [Smi06, CGMH+94,
GMPQ+97, dV06, Bos07, Vis07]. Figure 2.5 gives an overview of the archi-
tecture of a typical integration system [Smi06, dV06]. In all of these projects
mentioned, different techniques are used to find matches, or mappings be-
tween elements. Approaches from AI, clustering, semi automated methods
are some of the techniques applied in these projects. Finding mappings is
the task of component 2 in figure 2.5.

Although, the schema integration phase is an important and difficult
part of the entire integration process, it is not the main focus of this thesis.
The focus of this thesis is the part that takes place after schema matching.
Usually when two information sources are integrated, there is an overlap in
data instances. When data instances have to be integrated, decisions on
equality of those instances have to be made. In this thesis we present a
method to make this process unattended, i.e. the user does not need to be
actively involved during this process.



16 CHAPTER 2. RELATED RESEARCH

Figure 2.5: Architecture of a schema integration system



Chapter 3

Modeling Uncertain Data

In this chapter we will discuss the data model for probabilistic or uncer-
tain XML. A formal definition of the uncertain XML structure is given and
the semantics behind the data model is discussed. Some properties of the
model are highlighted and two storage improvements on the data model are
presented.

3.1 Possible Worlds

The semantics used in the probabilistic XML model is that of the possible
worlds. This semantics is used in several other uncertain and probabilistic
models and projects and is an intuitive interpretation of the uncertainty
associated with the data.

If a database is considered to hold information on real world objects,
then an uncertain database holds possible representations of those real world
objects. Each of those possible representations can have an associated prob-
ability. If one of the possibilities for a real world object is not to exist, then
this also is considered to be one of the possible representations.

A possible world is constructed by choosing one representation for each of
the real world objects in the database. Instead of one database, an uncertain
database can be seen as a set of possible databases. Or, if a database repre-
sents (part of) the real world, an uncertain database represents a set of (parts
of) possible worlds. As an example consider Table 3.1. In this table infor-
mation about 2 people, named John and James, is stored. For both “John”
and “James” the phone number is uncertain and in both cases there are two
possibilities, or alternatives for the value of the attribute Phone. From this
table 2×2 = 4 possible worlds can be constructed, all combinations between
different possibilities for each of the people stored in the database.

17
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(a) Source Database

Addresses
Name Phone

John 555-1234
John 555-4321
James 555-5678
James 555-8765

(b) Possible Worlds

World 1
Name Phone

John 555-1234
James 555-5678

World 2
Name Phone

John 555-1234
James 555-8765

World 3
Name Phone

John 555-4321
James 555-5678

World 4
Name Phone

John 555-4321
James 555-8765

Table 3.1: Construction of Possible Worlds

▽

◦

P (World1)

hhhhhhhhhhhhhhhhhhhhhh

◦

P (World2)
vv

v

vv
vv

◦

P (World3)
HH

H

HH
HH

◦

P (World4)

UUUUUUUUUUUUUUUUUUUU

· · · · · · · · · · · ·

Figure 3.1: Possible world representation of Address Book Example (XML)

3.2 Probabilistic XML

In this section, we will introduce the notion of probabilistic XML, using
the possible world approach described earlier. Following the possible world
approach, we store possible appearances of the database instead of one actual
appearance using XML as underlying data model. Consequently, our data
model is a probabilistic XML data model. The simplest way to construct
uncertain XML using the possible world approach, is by enumerating all
possible worlds in different subtrees and combining those subtrees into one
XML document. If desired, probabilities indicating the relative likelihood of
each of the worlds, can be associated with the subtrees. This representation
is called the possible world representation. Figure 3.1 shows the probabilistic
XML representation of the possible worlds in Table 3.1. In this figure the
actual XML nodes are replaced by (· · · ) to increase readability. These should
be replaced by certain XML trees representing that particular world.

Figure 3.1 shows that only the top level of the document contains a choice
and all of the subtrees of the top level nodes are certain XML documents.
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Since most possible worlds largely overlap, most nodes in the document are
duplicated in several possible worlds. Therefore, the possible world repre-
sentation, although theoretically interesting, semantically sound and easy to
understand, is not practical. However, it is used to demonstrate concepts
and functionality in the probabilistic XML DBMS. The possible world repre-
sentation is used as a starting point and in subsequent sections we will show
improvements on this general possible world representation.

3.3 Compact Representation

This section builds upon normal XML and the possible world model described
earlier. We improve the storage model by reducing redundancy in storage.
Our model is viewed as a tree, made up of nodes, containing subtrees. We
distinguish between three different kinds of nodes to be able to store possi-
bilities and associated probabilities. The use of three different kinds of nodes
increases expressiveness, as we will later show.

Since order is important in XML, we first introduce some notation for
handling sequences.

Notational convention 1 Analogous to the powerset notation P , we use a
power sequence notation S A to denote the domain of all possible sequences
built up of elements of A. We use the notation [a1, . . . , an] for a sequence of
n elements ai ∈ A (i = 1..n). We use set operations for sequences, such as
∪, ∃,∈, whenever definitions remain unambiguous.

We start by defining the notions of tree and subtree as abstractions of an
XML document and fragment. We model a tree as a node and a sequence of
child subtrees.

Definition 2 Let n = {id, tag, kind, attr, value} be a node, with
• id the node identity
• tag the tag name of the name
• kind the node kind
• attr the list of attributes, which can be empty
• value the text value of the node, which can be empty

Equality on nodes is defined as equality on all of their properties. Deep-
equality on nodes is defined as equality on nodes and their subtrees. We
indicate that a certain node n is a root node by n. Except for equality,
however, we abstract from the details of nodes.
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Definition 3 Let N be the set of nodes. Let Ti be the set of trees with
maximum level i inductively defined as follows:

T0 = {(n, ∅) | n ∈ N}

Ti+1 = Ti ∪ {(n, ST ) | n ∈ N
∧ST ∈ S Ti

∧(∀T ∈ ST • n 6∈ N T )
∧(∀T ,T ′ ∈ ST • T 6= T ′

⇒ N T ∩ NT ′
= ∅)}

where N T = {n} ∪
⋃

T ′∈ST N T ′
. Let Tfin be the set of finite trees, i.e.,

T ∈ Tfin ⇔ ∃i ∈ N • T ∈ Ti . In the sequel, we only work with finite trees.

Definition 3 requires the document to be a tree instead of a graph. A
node has a sequence of child nodes, which can be empty and can have only
one parent.

Since we will often work with entire subtrees instead of single nodes, we
define some functions to obtain a subtree. We obtain a subtree from a tree
T by indicating a node n in T which is the root node of the desired subtree.
We also define a function child that returns the child nodes of a given node
in a tree.

Definition 4 Let subtree(T , n) be the subtree within T = (n, ST ) rooted at
n.

• subtree(T , n) =

{

T if n = n

subtree(T ′, n) otherwise

where T ′ such that (n ′,T ′) ∈ ST ∧ n ∈ NT ′
.

For subtree(T , n) = (n, [(n1, ST 1), . . . , (nm, STm)]),
let child(T , n) = [n1, . . . , nm].

3.3.1 Probabilistic Tree

The central notion in our model is the probabilistic tree. In an ordinary XML
document, all information is certain. In probabilistic XML each XML node
can have zero or more possibilities, or alternatives. More generally, if we
consider a node to be the root node of a subtree, then there may exist zero
or more possibilities for an entire subtree. We model a probabilistic tree by
introducing two special kinds of nodes:

1. probability nodes depicted as ▽, and
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Figure 3.2: Example probabilistic XML tree.

2. possibility nodes depicted as ◦, which have an associated probability.

The root of a probabilistic XML document is always a probability node.
Children of a probability node are always possibility nodes and enumerate
all possibilities. The probabilities associated with the possibility nodes sum
up to at most 1, or all probabilities of sibling possibility nodes are unknown.

Ordinary XML nodes are depicted as • and are always child nodes of
possibility nodes. A probabilistic tree is well-structured, if the children of a
probability node are possibility nodes, the children of a possibility node are
XML nodes, and the children of XML nodes are probability nodes. Using
this layered structure, each level of the tree only contains one kind of nodes.

Figure 3.2 shows an example of a probabilistic XML tree. The tree rep-
resents an XML document with a root node ‘persons’ (which exists with
certainty). The root node has either one or two child nodes ‘person’ (with
probabilities .7 and .3, respectively). In the case there is only one child, the
name of the person is ‘John’ and the telephone number is either ‘1111’ or
‘2222’. The probabilities for both phone numbers are uniformly distributed.
The second case, where there are two persons with name ‘John’ is less likely
if we consider names to be a key like element. However, we can store this
more unlikely situation and in that case, the information of both persons
is certain, i.e., they both have name ‘John’ and one has telephone number
‘1111’ and the other has phone number ‘2222’.

In Chapter 5 we will use information integration as an application of prob-
abilistic XML. Figure 3.2 can be seen as a possible result of two documents
having been integrated. One document stating the telephone number of a
person named ‘John’ to be ‘1111’, and the other stating the telephone num-
ber of a person named ‘John’ to be ‘2222’. It is uncertain if both represent
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the same person (in the real world). A data integration matching rule ap-
parently determined that, with a probability of .7, they represent the same
person. Therefore, the combined knowledge of the real world is described
accurately by the given tree.

A probabilistic tree is defined as a tree, a kind function that assigns node
kinds to specific nodes in the tree, and a prob function that assigns probabil-
ities to possibility nodes. The root node is defined to always be a probability
node. A special type of probabilistic tree is a certain one, which means that
all information in it is certain, i.e., all probability nodes have exactly one
possibility node with an associated probability of 1.

Definition 5 A probabilistic tree PT = (T , kind, prob) is defined as follows
• kind ∈ (N → {prob, poss, xml})

• N T
k = {n ∈ NT | kind(n) = k}.

• kind(n) = prob where T = (n, ST )

• ∀n ∈ NT
prob∀n

′ ∈ child(T , n) • n ′ ∈ NT
poss

• ∀n ∈ NT
poss∀n

′ ∈ child(T , n) • n ′ ∈ NT
xml

• ∀n ∈ NT
xml∀n

′ ∈ child(T , n) • n ′ ∈ NT
prob

• prob ∈ NT
poss ֌ [0, 1]

• ∀n ∈ NT
prob•((

∑

n′∈child(T ,n) prob(n ′)) = 1∨(∀n ′ ∈ child(T , n)•prob(n ′) =

⊥)).
Where A ֌ B is a partial function.
A probabilistic tree PT = (T , kind, prob) is certain iff there is only one

possibility node for each probability node, i.e., certain(PT ) ⇔ ∀n ∈ N T
prob •

|child(T , n)| = 1. To clarify definitions, we use b to denote a probability
node, s to denote a possibility node, and x to denote an XML node.

Subtrees under probability nodes denote local possibilities. In the one-
person case of Figure 3.2, there are two local possibilities for the phone
number, it is either ‘1111’ or ‘2222’. The other uncertainty in the tree are
the possibilities that there are one or two persons. Viewed globally and from
the perspective of a device with this data in its database, the real world could
look like one of the following

• one person with name ‘John’ and phone number ‘1111’ (probability
.5 × .7 = .35),

• one person with name ‘John’ and phone number ‘2222’ (probability
.5 × .7 = .35), or

• two persons with name ‘John’ and respective phone numbers ‘1111’ and
‘2222’ (probability .3).
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We get these possible worlds by making a decision for one of the possibility
nodes at each of the probability nodes. For this reason, we also refer to
probability nodes as decision points .

Definition 6 A certain probabilistic tree PT ′ is a possible world of another
probabilistic tree PT, i.e., pw(PT ′,PT ), with probability pwprob(PT ′,PT )
iff

• PT = (T , kind, prob) ∧ PT ′ = (T ′, kind′, prob′)
• T = (n, ST n) ∧ T ′ = (n, ST ′

n)
• ∃s ∈ child(T , n) • child(T ′, n) = [s ]
• X = child(T , s) = child(T ′, s)
• ∀x ∈ X • child(T , x ) = child(T ′, x )
• B =

⋃

x∈X child(T , x )
• ∀b ∈ B • PT b = subtree(PT , b)

∧PT ′
b = subtree(PT ′, b)

∧pw(PT ′
b ,PT b)

• ∀b ∈ B • pb = pwprob(PT b ,PT ′
b)

• pwprob(PT ′,PT ) = prob(s) ×
∏

b∈B pb

The set of all possible worlds of a probabilistic tree PT is
PWSPT = {PT ′ | pw(PT ′,PT )}.

A probabilistic tree is a compact representation of the set of all possible
worlds, but there is not necessarily one unique representation. The optimal
representation is the one with the least number of nodes obtained through a
process called simplification.

Definition 7 Two probabilistic trees PT 1 and PT 2 are equivalent iff
PWSPT1 = PWSPT2. PT 1 is more compact than PT 2 if

∣

∣N PT1
∣

∣ <
∣

∣N PT2
∣

∣.
The transformation of a probabilistic tree to an equivalent more compact one
is called simplification.

The number of possible worlds captured by a probabilistic tree is deter-
mined by the number of decision points and possibilities at those points. We
also define a function leaf that returns all the leaf nodes of a tree.

The number of possible worlds defined by the tree PT , N
PW (T )
PT is equal

to the number of possible worlds at node n, defined by N
PW (T )
n where

• leaf(T ) = {n|n ∈ N T • child(n) = ∅}

• N
PW (T )
n = 1, if n ∈ leaf(T )

• N
PW (T )
n =

∏

n′∈child(T ,n) N
PW (T )
n′ , if kind(n) = poss
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Figure 3.3: Probabilistic XML tree equivalence.
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• N
PW (T )
n =

∑

n′∈child(T ,n) N
PW (T )
n′ , if kind(n) = prob

• N
PW (T )
n =

∏

n′∈child(T ,n) N
PW (T )
n′ , if kind(n) = xml

Note that the above calculation gives the calculation for |PWSPT |.
Figure 3.3 shows an example of two equivalent probabilistic trees. They

both denote the set of possible worlds containing trees with
• two nodes ‘nm’ and ‘tel’ with child text nodes ‘John’ and ‘1111’ respec-

tively (probability .8) and
• two nodes ‘nm’ and ‘tel’ with child text nodes ‘John’ and ‘2222’ respec-

tively (probability .2).

3.4 Expressiveness

As mentioned earlier, relational approaches often disallow dependencies among
attributes. The higher expressiveness of the probabilistic tree makes such a
restriction unnecessary. Figure 3.4 illustrates three common patterns: in-
dependence between attributes (Figure 3.4(a)), where any combination of
‘nm’ and ‘tel’ is possible. The advantage in XML is that values only have
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to be stored once, if they are independent of other elements or values. The
second pattern is dependency between attributes (Figure 3.4(b)), where only
the combinations ‘John’/‘1111’ and ‘Jon’/‘2222’ are possible. In this case
the value of one element depends on the value of another element. The last
pattern is uncertainty about the existence of an object (Figure 3.4(c)). Here
one possibility is empty, i.e., has no subtree. The meaning of this empty
subtree is not that the value is unknown, but rather that the subtree simply
doesn’t exist. These patterns can occur on any level in the tree, which allows
a much larger range of situations to be expressed.

3.5 Trio data model

The Trio data model is based on the relational model. The Trio system is an
Uncertainty and Lineage Database (ULDB) that captures uncertainty about
the existence of data and also keeps track of where the data came from.

Uncertainty

The uncertainty in Trio uses Type-2 uncertainty. Each tuple in the database
can be uncertain both in existence and appearance. Instead of regular tu-
ples, alternatives for a tuple are stored and these alternatives are mutually
exclusive. The set of alternatives is called an x-tuple. In addition, a tuple
can be annotated with a questionmark, indicating that there is a possibility
the tuple doesn’t exist at all.

Example 1 Table 3.2 shows an address book example in the Trio model. In
this example, information about a person named John is stored. He either
has room number 3035, or room number 3122. The room of a second person
named Mary is either 3120, or 3110, or the entire tuple about this person
doesn’t exist. This possible non-existence of the tuple is indicated by the
question mark.

In this case no probability is associated with the alternatives, which in-
dicates that alternatives are mutually exclusive, but no information is given
about the relative likelihood of the alternatives.

Alternatives in Trio can have associated probabilities. Although it is
possible to deviate from probability theory, the default is to adhere to prob-
abilistic computations. This means, that the sum of probabilities associated
with alternatives within one x-tuple does not exceed 1. If the sum is less than
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Addressbook (name, room)
(John, 3035) ‖ (John, 3122)
(Mary, 3120) ‖ (Mary, 3110) ?

Table 3.2: Trio address book example

Addressbook (name, room)
(John, 3035):.8 ‖ (John, 3122):.2
(Mary, 3120):.6 ‖ (Mary, 3110):.2

Table 3.3: Trio address book example

1, this implicitly means that there is a questionmark on the tuple, making
its existence uncertain.

Example 2 We extend example 1 with probabilities on the alternatives to
indicate relative likelihood of individual alternatives within x-tuples. The new
address book is shown in Table 3.3. In the first x-tuple, the probabilities add
up to 1, but in the second x-tuple, the probabilities do not add up to 1 and as
a result, there is an implicit questionmark on the second x-tuple, indicating
that the existence of the x-tuple itself is uncertain. The probability that this
x-tuple does not exist is equal to remaining probability mass, here 0.2.

3.6 Levels of Uncertainty

In an uncertain relational data model, there are several levels of uncertainty
that can be distinguished. First, uncertainty can be associated with each
tuple in the relation. This kind of uncertainty is shown in previous examples.
The uncertainty at tuple level indicates if, and with which probability a tuple,
or alternative, is present in the relation. This tuple level uncertainty is also
referred to as Type-1 uncertainty [ZP97].

Another level of uncertainty is that associated with attributes. In this
case, the tuple itself is certainly in the relation, but alternatives are specified
at the granularity of attributes. This type of uncertainty is referred to as
attribute level uncertainty, or Type-2 uncertainty [ZP97]. The information
captured in Table 3.1(a) can be constructed by using either Type-1, or Type-
2 uncertainty. The result is shown in Table 3.4. In the case with Type-1
uncertainty, there are 2 tuples, both with 2 alternatives, resulting in 4 tuples
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(a) Type-1 representation

Addresses
Name Phone

John 555-1234 0.8
John 555-4321 0.2
James 555-5678 0.7
James 555-8765 0.3

(b) Type-2 representation

Addresses
Name Phone

John 555-1234 0.8
555-4321 0.2

James 555-5678 0.7
555-8765 0.3

Table 3.4: Data represented with either Type-1 or Type-2 uncertainty

with associated probabilities in the relation. In the Type-2 situation, there
are just 2 tuples, where one of the attributes can have multiple values with
associated probabilities.

A last level of uncertainty is that associated with a table. If a table is
considered to hold information about the world, then objects present in the
world, but missing in the database, can be seen as uncertainty about the
real world. In this case, the database doesn’t cover the entire world (with
respect to the domain of the database). Coverage in that sense, can be seen
as a third level of uncertainty. Of course, in the context of address books
the notion of coverage doesn’t make too much sense, since keeping track of
the number of people we don’t store in the database is probably more time
consuming than just storing the actual data. However, when we consider
data from sensors being stored in the database, the knowledge that some
readings are missing in the database, because the sensors produce data at a
higher rate than the database can store, can be useful. To apply coverage to
our address book example, we could specify that we actually know 4 people.
Combined with the fact that only information about 2 people is stored, the
resulting coverage is 0.5.

In uncertain relational models, these three levels of uncertainty have to
be treated differently. Not only is the semantics behind the uncertainty
different for each of the levels, but also the way to implement them and
provide functionality to store, query and manipulate the uncertainty differs
for each of the levels. In probabilistic XML there is no real difference between
the three levels of uncertainty mentioned before. Depending on the context
node, the probability associated with a certain node can be regarded as being
Coverage uncertainty, Type-1 (table-level), or Type-2 (attribute-level). This
context node dependency is illustrated in Figure 3.5. The context possibility
node in this figure is indicated by ⋆. A probability associated with this node
for its descendents, is of type-1 uncertainty, whereas that same probability for
its ancestors is of Type-2 uncertainty. If we only consider the tree underneath
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Figure 3.5: Context dependent levels of uncertainty

the dotted line, the probability indicates coverage.

3.7 DAG Representation

Although the compact representation is a lot more space efficient than the
possible world representation, there still can be a lot of redundancy. In many
cases, possible worlds have a lot of overlap, which can not be compacted
using the compact representation. Consider the compact representation of
the address book given in Figure 3.2. In this small example, the name of
the person is repeated three times and both phone numbers are repeated
twice. Sharing subtrees would be a logical solution. This turns the tree into
a DAG..

3.7.1 Discovering Common Subtrees

The first step in constructing a DAG, is by going through the tree bottom-
up. We construct buckets that contain a subtree from the leaf up. If two
subtrees are equal, they point to the same bucket. As soon as in an itera-
tion the subtrees differ, the bucket is considered a common subtree and the
first occurrence of that tree is instantiated, while all next occurrences are
references to the instantiation.

The result of this common subtree discovery phase, is a DAG, that can
still contain duplicate information. This DAG is used as a starting point for
further optimization.
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3.8 Quality Measures

The measures we introduce in this section can be used for all data models,
as long as local possibilities or alternatives can be identified. In IMPrECISE,
our own probabilistic XML prototype that supports integration using uncer-
tainty, probabilities are always local, because the probability associated with
a possibility node expresses the likelihood of the subtree of that particular
possibility node to hold the correct information about the real world. In
relational systems such as Trio, probabilities are often associated with alter-
natives, which indicate the likelihood of an alternative being correct in the
real world. This type of probability is also local. The number of choice points
in IMPrECISE is equal to the number of probability nodes, since at each of
these nodes a choice for one of the possibility nodes has to be made. In Trio
the choice points are determined by the number of x-tuples in the relation.
For each x-tuple one alternative has to be chosen.

We first define some notation. Let Ncp be the number of choice points
in the data (i.e., probability nodes in IMPrECISE), Nposs ,cp the number of
possibilities or alternatives of choice point cp, and let Pmax

cp be the probability
of the most likely possibility of choice point cp.

3.8.1 Number of possible worlds

An often used measure for the amount of uncertainty in a database is the
number of possible worlds it represents. The number of possible worlds
|PWSPT | can be used to measure the amount of uncertainty present in the
document. More uncertainty about individual objects, results in more pos-
sible worlds in the information source. The number of possible worlds is
exponential to the number of objects described by the database.

3.8.2 Uncertainty density

The number of possible worlds, |PWSPT | can be used as a measure for the
amount of uncertainty in the document. This measure, however, exaggerates
the perceived amount of uncertainty, because it grows exponentially with
linearly growing independent possibilities. Furthermore, we would like all
measures to be numbers between 0 and 1. We therefore propose the uncer-
tainty density as a measure for the amount of uncertainty in a database. It
is based on the average number of alternatives per choice point:

Dens = 1 −
1

Ncp

Ncp
∑

j=1

1

Nposs ,j
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Figure 3.6: Examples of uncertainty density and decisiveness



3.8. QUALITY MEASURES 31

Dens is 0 for a databases that contains no uncertainty. Dens decreases if
there is more certain data in the database for the same amount of uncertain
data (compare Figures 3.6(a) and 3.6(b)). Dens rises if a choice point contains
more alternatives (compare Figures 3.6(b) and 3.6(c)). If all choice points
contain n alternatives, Dens is (1 − 1

n
), which approaches 1 with growing n.

The uncertainty density is independent of the probabilities in the database.
It can be used, for example, to relate query execution times to, because
query execution times most probably depend on the number of alternatives
to consider.

3.8.3 Answer decisiveness

Even if there is much uncertainty, if one possible world has a very high
probability, then any query posed to this uncertain database will have one,
easy to distinguish, most probable answer. We say that this database has
a high answer decisiveness. In contrast, if there is much uncertainty and
the probabilities are rather evenly distributed over the possible worlds, then
possible answers to queries will be likely to have similar probabilities. We
have defined the answer decisiveness as

Dec =
1

Ncp

Ncp
∑

j=1

Pmax
j

(2 − Pmax
j ) × log2(max(2, Nposs ,j))

Dec is 1 for a database that contains no uncertainty, because each term
in the sum becomes 1

(2−1)×log2 2
= 1. If at each choice point j with two

alternatives, there is one with a probability close to one (i.e., Pmax
j is close

1), then all terms for j are also close to 1 and Dec is still almost 1. When
Pmax

j drops for some j, then Dec drops as well. Dec also drops when choice
points occur with growing numbers of alternatives. This is accomplished by
the log2(max(2, Nposs ,j)) factor (compare Figures 3.6(b) and 3.6(c)). We have
taken the logarithm to make it decrease gradually.

3.8.4 Experiments

Set up

In this chapter we introduced the measures for uncertainty density and deci-
siveness. The purpose of the experiments hence is not to validate or compare
systems or techniques, but an evaluation of the behavior of the measures to
validate their usefulness.
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name repr. #pws #nodes

2x2 tree 16 469
4x4 tree 2,944 7,207
6x6 tree 33,856 25,201
6x9 tree 2,258,368 334,616
2x2 +rule tree 4 328
4x4 +rule tree 64 2,792
6x6 +rule tree 256 8,328
6x9 +rule tree 768 21,608
6x15 +rule tree 3,456 87,960
2x2 dag 16 372
4x4 dag 2,944 1,189
6x6 dag 33,856 2,196
6x9 dag 2,258,368 13,208
2x2 +rule dag 4 280
4x4 +rule dag 64 761
6x6 +rule dag 256 1,243
6x9 +rule dag 768 1,954
6x15 +rule dag 3,456 4,737
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Figure 3.7: Data sets (pws = possible worlds)

As application of uncertainty in data, we selected data integration. In our
research on IMPrECISE we attempt to develop data management functional-
ity for uncertain data to be used for this application area. When data sources
contain data overlap, i.e., they contain data items referring to the same real
world objects, they may conflict and it is not certain which of the sources
holds the correct information. Moreover, without human involvement, it is
usually not possible for a data integration system to establish with certainty
which data items refer to the same real world objects. To allow for unat-
tended data integration, it is imperative that the data integration system can
handle this uncertainty and that the resulting (uncertain) integrated source
can be used in a meaningful way.

The data set we selected concerns movie data: Data set ‘IMDB’ is ob-
tained from the Internet Movie DataBase from which we converted title,
year, genre and director data to XML. Data set ‘Peggy’ is obtained from
an MPEG-7 data source of unknown but definitely independent origin. We
selected those movies from these sources that create a lot confusion: sequels,
documentaries, etc. of ‘Jaws’, ‘Die Hard’, and ‘Mission Impossible’. Since
the titles of these data items look alike, the data integration system often
needs to consider the possibility of those data items referring to the same
real-world objects, thus creating much uncertainty in the integration result.
The integrated result is an XML document according to the aforementioned
probabilistic tree technique [KKA05].
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Figure 3.8: Uncertainty density and decisiveness

To create integrated data sets of different sizes and different amounts
of uncertainty, we integrated 2 with 2 movies selected from the sources, 4
with 4, 6 with 6, and 6 with 15 movies. We furthermore performed this
integration with (indicated as ‘+rule’) and without a specific additional rule
that enables the integration system to much better distinguish data about
different movies. This results in data sets with different characteristics. To
be able to investigate uncertainty density, we additionally experiment with
the data represented as tree as well as DAG. Although our implementation
of the DAG representation does not produce the most optimally compact
DAG yet, it suffices to experiment with its effect on uncertainty density. See
Figure 3.7 for details of the data sets and an indication of the compactness
of the representation.

Uncertainty density

Figure 3.8(a) shows the uncertainty density for our data sets. There is a
number of things to observe.

• Density values are generally rather low. This is due to the fact that in-
tegration produces uncertain data with mostly choice points with only
one alternative (certain data) and relatively few with two alternatives
(uncertain data). For example, the ‘6x9 tree’ case has 74191 choice
points with one alternative and 5187 choice points with two alterna-
tives.
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• When comparing the lines for ‘tree’ with ‘dag’, and ‘tree + rule’ with
‘dag + rule’, we observe that the dag-versions have a considerable
higher uncertainty density. This can be explained by the fact that
the DAG representation shares common subtrees. Most commonality
appears for certain data that occurs in all possible worlds. Hence, rel-
atively more nodes are devoted to uncertainty in the DAG representa-
tion. The uncertainty density measure correctly exhibits this behavior.

• When comparing the lines for ‘tree’ with ‘tree + rule’, and ‘dag’ with
‘dag + rule’, we observe that the additional rule not only reduces the
number of possible worlds, but also reduces the uncertainty density.
The knowledge of the rule reduces uncertainty, but the amount of cer-
tain information stays the same. Therefore, it is logical that the un-
certainty density goes down.

• The ‘+ rule’ lines drop with growing database size, while the other two
do not. Database growth in this experiment means additional movies
in both data sources. The specific rule we used in this experiment
helps the integration system to determine which pairs of data items
from both sources cannot possibly refer to the same real world object.
The density measure correctly shows that the additional movies cause
relatively more confusion without the rule than with it.

In general, we can say that important characteristics concerning the
amount of uncertainty in the database can be assessed successfully with the
uncertainty density measure. Moreover, it does not suffer from the disadvan-
tage of exaggeration that the number of possible worlds has.

Answer decisiveness

Figure 3.8(b) shows the answer decisiveness for our data sets. This experi-
ment focuses on the tree representation only, because the answers produced
by a query is independent of the representation, hence the answer decisive-
ness does not depend on the representation. There are a number of things
to observe.

• Decisiveness values are generally rather high. This has the same reason
as why density is generally low: there are mostly choice points with only
one alternative and few with two alternative, hence in most cases it is
easy to make a choice for an answer because there is only one to choose
from.



3.8. QUALITY MEASURES 35

• Similar patterns in the lines for decisiveness can be observed when
comparing with uncertainty density. Both measures are related, be-
cause the more alternatives per choice point on average, the higher the
uncertainty density, but also the lower the decisiveness. Decisiveness
only starts to deviate from density if the associated probabilities ensure
that it is easy to choose the most likely possible answer. The proba-
bility assignment logic in our system, however, is still in its infancy
and is apparently not capable of giving good decisiveness despite high
uncertainty density.
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Figure 3.9: Density vs. Decisiveness

The relationship between the
density and decisiveness measures
is illustrated by Figure 3.9. The
straight line marked ‘uniform distri-
bution’ is drawn for the situation
where the probabilities are always
uniformly distributed and, for sim-
plicity, where there are only choice
points with at most two alternatives
(which is the case for our test data
and which makes the line straight).
In this situation, uncertainty density
fully determines answer decisiveness.
The fact that the lines are not on the
straight line shows that the proba-
bility assignment logic of our system
has some impact on decisiveness de-
spite the uncertainty density, but the impact is (as expected) rather limited.
We expect that an integration system with better probability assignment
logic will produce points much higher in the graph. Most importantly, the
decisiveness measure can be effectively used to measure the quality of the
probability assignment logic.
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Chapter 4

Querying Uncertain Data

In this chapter we discuss and explain querying of uncertain data and in
particular querying of probabilistic XML. The semantics of the query lan-
guages will be an important topic of interest, as will be the rewriting from
probabilistic versions of the query language to non-probabilistic versions of
query languages.

4.1 Semantics

As explained earlier, the semantics adopted in most uncertain and probabilis-
tic databases in general and in IMPrECISE in particular, is that of possible
worlds. The commutative diagram in Figure 4.1 shows how the semantics
are followed.

Irrespective of the data model, the database D contains information,
which represents a set of possible worlds, D1, · · · , Dn. The downward arrow
on the left side in Figure 4.1 denotes the representation function PI. Oper-
ations q are, semantically, performed on this set of possible worlds (bottom-
right arrow). The result Rq(D1), · · · , Rq(Dn) can, of course, be transformed
back into one single database Rq(D) (upward arrow on the right). The im-
plementation of operations uses the direct connection (right arrow at the

D
OO

PI

��

Q
// Rq(D)

OO

PI

��

D1, · · · , Dn

q
// Rq(D1), · · · , Rq(Dn)

Figure 4.1: Commutative diagram

37
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top). In order words, the bottom part of the figure represents the semantics
of querying, the possible worlds, whereas the top of the figure represents the
operational semantics, or the compact representation and operations work-
ing directly on the compact representation without enumerating all possible
worlds.

In case a query is posed to a database using the possible world semantics,
this means that the query is evaluated in every world represented by the
database. The results from each of the worlds is collected and the union
of the results from all worlds is presented to the user as the result of the
query to the database. In many cases, different worlds give the same query
result which can be merged and their probabilities added, but this is merely
a presentational improvement. The idea behind the possible world approach
is that all worlds have a part in the result, proportional to their associated
probability.

Example 3 Consider a document containing movies. Obtaining all titles
from movies released in the year 1995 using probabilistic XPath is equal to
evaluating the non-probabilistic XPath version on each of the possible worlds.
The query would be

/movies/movie[./year=’1995’]/title

The result of this query is constructed by evaluating the query in each of
the possible worlds and combining the results of these worlds into one.

4.2 Relational querying

In Trio, queries are transformed from the Trio Query Language (TriQL) to
a SQL statement that is passed to the underlying database. TriQL itself is
a SQL like language. Statements are of the form SELECT FROM WHERE,
but instead of querying a regular database, possible worlds are queried in the
way described in the previous section. The result is then grouped by x-tuple,
such that all alternatives for each x-tuple end up in the same x-tuple again.
For regular SELECT queries this means that a simple ORDER BY statement
is added to the query that is passed to the underlying database, sorting the
result by x-tuple. The Trio layer splits the result on changing x-tuples and
presents the result to the user on a per x-tuple basis.

In case of SELECT DISTINCT queries, this method becomes somewhat
more complicated, because now duplicates in, but also between x-tuples have
to be eliminated. Two queries are needed to perform a SELECT DISTINCT
in Trio. The first query eliminates duplicates, while the second query reorders
the result on x-tuple id.
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Q
// Rq(D1), · · · , Rq(Dn)

Figure 4.2: Extended commutative diagram

4.3 XPath queries

In IMPrECISE queries are transformed into XQuery. We did not yet work on
the implementation of querying compact or DAG representation directly as
a result, the database is expanded to the possible world representation and
the query is executed in every possible world, exactly as prescribed by the
semantics. The results are combined and presented to the user.

As a result, the current implementation returns a sequence with certain
XML elements with an associated probability of the world that produced
that particular element as a result to the query. Preliminary results do show
that in case of forward axes, rewriting a query that can be used directly on
the compact representation is straightforward. Adding backward axes and
predicates to be used directly on the compact representation, and especially
the DAG representation is future research.

4.4 Across Possible Worlds

Although the semantics used in IMPrECISE is that of possible worlds, there
are two language constructs that don’t follow the commutative diagram from
Figure 4.1 and therefore don’t adhere to the possible world approach as
explained in Section 4.1. These language constructs are horizontal queries
and all of the new aggregates.

4.4.1 Horizontal Queries

In many cases comparing possible worlds, or choosing between possible worlds,
is convenient, or even necessary. A first example of such a query could be:

Retrieve for each movie title, the alternative with the highest probability.

This would require a comparison between possible worlds, since it is not nec-
essarily true that one possible world contains all most likely movie-alternatives.
Another query is
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Title Year Rating
Die Hard 1988 4 .33

1990 3 .33
1995 3 .33

King Kong 1933 4 .05
1976 3 .2
2005 4 .75

Table 4.1: Movie Database Example

Retrieve all movies that have at most 3 alternatives

This query selects all movies where the number of alternatives is low (at most
3), which causes a high decisiveness for that particular query.

The construct to query between possible worlds in Trio, is called hori-
zontal subquery1. The alternatives of one element or tuple are viewed as a
separate relation. This relation is then queried as a normal query, where the
alternatives are treated as tuples in this new mini relation. This mini relation
represents sets of possible worlds instead of the possible worlds separately,
this is due to the fact that a mini relation restricts the database to only one
object. Objects have alternatives, that do not correspond to the possible
worlds directly, but to sets of possible worlds. Therefore, a horizontal sub-
query doesn’t follow the commutative diagram given in Figure 4.1, because
after querying the possible worlds, the answers are not directly presented
as the result. In case of querying probabilities, the answer is not even ob-
tained from querying possible worlds. The extended commutative diagram
in Figure 4.2 does capture constructs working across possible worlds, by in-
troducing an operational arrow from the original database to the result set,
indicated by the dashed arrow in the figure.

In Trio, horizontal subqueries are surrounded by square brackets. The
syntax of a horizontal subquery is identical to the syntax of regular SQL.

Example 4 Consider a movie database with schema movie(title, year, rating)
as shown in Table 4.1. All of the attributes are uncertain, i.e. can have al-
ternatives. The rating column holds a number between 0 and 5 indicating
the user rating for that particular movie. We pose a query to retrieve only
those tuples that have a high decisiveness, i.e. the number of alternatives is

1The term horizontal subquery was introduced in the Trio project at Stanford Univer-
sity
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Title Year Rating CONF
King Kong 1933 4 .05

1976 3 .2
2005 4 .75

Table 4.2: Movie Database Result

at most 3 and at least one of these alternatives has an associated probability
of 75% or more. The resulting query is:

SELECT *

FROM movie

WHERE EXISTS [SELECT *

FROM movie

WHERE count(*)<4 AND MAX(CONF) >= 0.75]

The reference to movie in the horizontal subquery is just to be compatible with
the SQL standard and can be read as a reference to the current x-tuple from
the movie table being evaluated. The result of the query is given in Table 4.2.

We introduced some abbreviations for horizontal subqueries, because they
are mostly used in very specific settings. Horizontal subqueries mostly query
those tables that are also used in the outer query. The first abbreviation
omits the FROM clause altogether, assuming the same list of tables as used
in the outer query. Also, most often horizontal subqueries are used in the
WHERE clause as part of an EXISTS statement. In these cases, not even the
select statement is needed. The second abbreviation leaves out the FROM
statement and the SELECT statement, reducing the horizontal subquery to
a WHERE clause. The keyword WHERE in this case is also omitted. The
previously given query can be rewritten using the second abbreviated form
as follows.

SELECT *

FROM movie

WHERE EXISTS [count(*)<4 AND MAX(CONF) >= 0.75]

4.4.2 Aggregates

Aggregate functions combine the values of a set of attribute values into one
value. Examples are the total price of a collection or the average mark of
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students. Observe that a traditional aggregate operator works in one world
where everything is certain. To come up with a proper semantics for aggre-
gate operators in the context of probabilistic relations, we use the strategy
of enumerating possible worlds. For each possible world pw with associated
probability P (pw), we apply the traditional aggregate operator aggr . The
results (aggr , P (pw)) together form the resulting probabilistic relation. Ob-
serve that normal aggregates do not work across possible worlds.

Given the movie rating relation of Table 4.2 and the query below:

SELECT MAX(Rating)

FROM movies

This would traditionally return the number 4. This is, however, only true
for the worlds where ‘King King’ is produced in 1933 or 2005, but there is
another possible world. This possible world should contribute to the result.
The correct result

{(4, 0.05), (3, 0.20), (4, 0.75)}

= {(3, 0.20), (4, 0.80)}

reflects the existence of three possible worlds, one possible world for each
of the possible ratings for “King Kong”. The final answer reflects the fact
that two of those worlds have the same aggregate result and are therefore
combined and their associated probabilities added.

Let pR be a probabilistic relation, for example a Trio relation and let pT
be a probabilistic tuple. In more general terms, the probabilistic aggregate
operators (MAX, MIN, SUM, AVG) are defined by

aggrf (pR) ∈ P([0, 1] × R)

where f indicates a field name. We use the notation aggr f(pw) for the tradi-
tional counterpart of an aggregate operator evaluated in possible world pw.
The aggregate function aggr f is defined by

aggr f(pR) = {(P (pw), aggrf (pw)) | pw ∈ PWS}

EXP function

All aggregate operators take the existence of possible worlds into account.
However, the system should be able to predict information about the real
world. We, therefore, introduce a new aggregate function, EXP , which re-
turns the expected value of a numerical field. The EXP aggregate function,
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therefore, does work across possible worlds, since it computes an aggregate
over the worlds.

EXPf (pR) ∈ R

It is defined by
∑

pT∈pR

πf (pT ) × Pf(pT )

∑

pT∈pR

Pf(pT )

Where πf (pT ) is the value of attribute f in pT . The function calculates
the weighted average of the field over all possible worlds. In the presence of
a GROUP BY clause, we assume pR to represent one group. For example,

SELECT EXP(Rating)

FROM movies

GROUP BY title

returns 4×0.05+3×0.20+4×0.75
1.0

= {3.8}, the expected ratings for all movies in
the relation.

EXP can be used in combination with other aggregate functions. The
expected maximum rating is obtained by

SELECT EXP(MAX(Rating))

FROM movies

The fact that EXP works across possible worlds, can be clearly observed
in the above example. The MAX aggregate results from all possible worlds
are passed to the EXP function. By using results from different possible
worlds, the EXP function works across possible worlds.

4.4.3 Querying Probabilities

Within a world, the probability for that world is not known, i.e. using
normal database operations, the probability for a world is inaccessible. In
this respect, querying probabilities, or uncertainty in general, i.e. the number
of alternatives for an element, is an operation that works across possible
worlds. New functions have to be defined to query the probability and a
construct is needed to compare between possible worlds.

In Trio, for example, the CONF function returns the probability for an
alternative. However, when using this function, the user should take notice of
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title

Die Hard I 0.8
Die Hard II 0.7
King Kong 0.9

Table 4.3: Movie series

the exact meaning of the result. The function can either return the probabil-
ity of a specific alternative, or the probability of the return value, which is in
general the sum of the possible worlds where this particular value exists. In
many cases these probabilities are the same, but there are some exceptions.
These exceptions occur when data dependency arises.

Example 5 Consider the Table 4.3 which contains titles of movies. We
pose a query to get those combinations of movies that possibly belong to a
series. In this query, the function distance(a, b) returns the edit-distance of
parameters a and b.

SELECT a.title, b.title, CONF(a.title), CONF(b.title), CONF(*)

FROM movies a, movies b

WHERE (distance(a.title, b.title) < 3) AND

(a.title < b.title)

The result of this query is (”Die Hard I”, ”Die Hard II”, 0.8, 0.7, 0.56)
with probability 0.56. Probabilities 0.8 and 0.7 in the original table are the
alternative based probabilities, however, the probability associated with the
result alternative is 0.56. The original probabilities are retrieved by using
CONF(title), while the result probability is obtained with CONF(*).

4.5 Updates

An update in the possible world approach, means performing the update
in every possible world. If an update is performed, where the value of an
element, or elements is changed and as a result, the element becomes equal
to an already existing element, the number of possible worlds and hence, the
amount of uncertainty is reduced.

Example 6 Consider Table 4.2 containing title, year and rating for movies
and the following update
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Title Year Rating CONF
King Kong 1976 3 .2

2005 4 .80

Table 4.4: Movie Database Result

UPDATE movies SET Year=2005 WHERE Year=1933

The result of the update is shown in Table 4.4. This table shows that the
number of alternatives is reduced from 3 to 2, because the year 1933 changed
to 2005 and all other attribute values of the 1933 alternative were already
equal to the values of the 2005 alternative, merging the two alternatives in
the updates databases. The associated probabilities of the two alternatives
were added.

When the data source is considered to be the result of multiple sources
that are integrated, feedback on this source can be applied to indicate the va-
lidity of the integrated data. This feedback process is discussed in Chapter 6.
Note that feedback is not equal to performing an update on the document.

4.6 Answer Quality

Querying uncertain data results in answers containing uncertainty. There-
fore, an answer is not correct or incorrect in the traditional sense of a database
query. We need a more subtle notion of answer quality.

In the possible world approach, an uncertain answer represents a set of
possible answers each with an associated probability. In some systems it is
possible to work with alternatives without probabilities, but these can be
considered as equally likely, hence with uniformly distributed probabilities.
The set of possible answers ranked according to probability has much in
common with the result of an information retrieval query. We therefore
base our answer quality measure on precision and recall [BYRN99]. We
adapt these notions, however, by taking into account the probabilities of
the possible answers. Correct answers with high probability are better than
correct answers with a low probability. Analogously, incorrect answers with
a high probability are worse than incorrect answers with a low probability.

XQuery answers are always sequences. The possible answers to an XQuery
on an uncertain document, however, largely contain the same elements.
Therefore, we construct an amalgamated answer by merging and ranking
the elements of all possible answers. This can be accomplished in XQuery
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declare function rank results($pws as element(world)*)

as element(answer)*

{
for $v in distinct-values($pws/descendant::text())

let $ws := $pws[./descendant::text()[.=$v]]

,$rank := sum($ws/@prob)

order by $rank descending

return <answer rank="{$rank}">{$v}</answer>
};

Figure 4.3: XQuery function for ranking query results

with the function in Figure 4.3. The effectiveness of this approach to query-
ing a probabilistic database can be illustrated with an example. Suppose we
query a probabilistic movie database asking for horror movies:

//movie[.//genre="Horror"]/title.
Even though the integrated document may contain thousands of possible

worlds, the amalgamated answer is restricted to the available movie titles
considered to be possibly belonging to a horror movie, which will be few in
number.

HA C

Prec =

|C|
|A|

Rec =

|C|
|H|

Figure 4.4: Precision and re-
call.

Precision and recall are traditionally
computed by looking at the presence of cor-
rect and incorrect answers. Let H be the
set of correct answers to a query (as deter-
mined by a human), A the set of answers
(the elements of the amalgamated query an-
swer), and C the intersection of the two, i.e.,
the set of correct answers produced by the
system (see Figure 4.4).

We adapt the precision and recall mea-
sures by taking into account the probabilities: An answer a is only present
in the amount prescribed by its probability P (a). Incorrect answers, on the
other hand, are also only present in the amount prescribed by their proba-
bilities. Incorrect answers are those answers present in the answer set A, but
not present in the correct document set H , or a ∈ (A − C)

This reasoning gives us the following definitions for precision and recall.

Prec =
∑

a∈C
P (a)

|C|+
∑

a∈(A−C) P (a)
Rec =

∑

a∈C
P (a)

|H|

Example 7 Say the answer to the query “Retrieve all horror movies” is
“Jaws” and “Jaws 2”. If the system returns this answer, but with a confidence



4.6. ANSWER QUALITY 47

of 90% for both movies, then precision and recall are both 0.9+0.9
2

= 0.9. If,
however, it also gives some other (incorrect) movie with a confidence of 20%,
then precision drops to 0.9+0.9

2+0.2
= 0.82 and recall stays 0.9.

4.6.1 Experiments

To obtain test data suitable for evaluating our answer quality measure, we
took one of the data sources: an IMDB document with 9 movies. We made
two copies of it, randomly polluted them by corrupting text nodes, and then
integrated them. We made sure we didn’t pollute the same text nodes, so
‘the truth’ is still available in the combined data of both sources and an ideal
integration system would be able to reconstruct it. We furthermore took
three queries and posed them to the data integration result of data sources
with increasing pollution. A pollution of 2 means that 2 randomly chosen
text nodes in both sources have been corrupted by changing a randomly
chosen character to ‘@’. This pollution not only affects the data integration,
also in some of the answers we see these modified strings appear. Although
they are seemingly almost correct, we classified these answers as incorrect.

Table 4.5 shows the answer quality measurements for the three queries.
In this table an “X” behind the probability indicates that the answer is
incorrect. Even though our system produces the correct answers in most
cases, the confidence scores the system produces are rather modest. This
is due to the naive probability assignment explained earlier. Our adapted
precision and recall measures effectively reflect this aspect of reduced answer
quality. Missing answers (as in Query 1 / Pollution 20, and Query 3 /
Pollution 20) is of course worse than just modest confidence scores; indeed
radically lower recall is given to these cases.
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(a) Query 1: //movie[.//genre="Horror"]/title (All horror movies)

Poll P(a) Answer Prec Rec

2 79.4% “Jaws” 79.4% 79.4%
79.4% “Jaws 2”

5 77.4% “Jaws” 69.5% 77.4%
77.4% “Jaws 2”
22.6% X “Ma@ing of Steven Spielberg’s ’Jaws’, The”

10 85.4% “Jaws” 74.5% 85.4%
85.4% “Jaws 2”
29.2% X “Ma@ing of Steven Spielberg’s ’Jaws’, The”

20 85.4% “Jaws” 74.5% 42.7%
14.6% X “Ma@ing of Steven Spielberg’s ’Jaws’, The”

(b) Query 2: //movie[./year="1995"]/title (All movies produced in 1995)

Poll. P(a) Answer Prec Rec

2 100.0% “Die Hard: With a Vengeance” 100.0% 100.0%
100.0% “Behind the Scenes: Die Hard - With a Vengeance”
100.0% “Making of Steven Spielberg’s ’Jaws’, The”

5 79.4% “Die Hard: With a Vengeance” 56.3% 64.3%
58.8% “Behind the Scenes: Die Hard - With a Vengeance”
54.8% “Making of Steven Spielberg’s ’Jaws’, The”
20.6% X “Behind th@ Scenes: Die Hard - With a Vengeance”
11.3% X “Ma@ing of Steven Spielberg’s ’Jaws’, The”
5.6% X “Jaws”
5.6% X “Jaws 2”

10 85.4% “Die Hard: With a Vengeance” 47.1% 56.3%
41.7% “Behind the Scenes: Die Hard - With a Vengeance”
41.7% “Making of Steven Spielberg’s ’Jaws’, The”
21.9% X “Behind th@ Scenes: Die Hard - With a Vengeance”
14.6% X “Ma@ing of Steven Spielberg’s ’Jaws’, The”
7.3% X “Jaws”
7.3% X “Jaws 2”
7.3% X “Die Hard 2”

20 78.1% “Die Hard: With a Vengeance” 52.6% 53.8%
41.7% “Behind the Scenes: Die Hard - With a Vengeance”
41.7% “Making of Steven Spielberg’s ’Jaws’, The”
7.3% X “Behind th@ Scenes: Die Hard - With a Vengeance”

(c) Query 3: //movie[./title="Jaws 2"]/year

(When was Jaws 2 produced?)

Poll. P(a) Answer Prec Rec

2 69.1% “1978” 62.6% 69.1%
10.3% X “1975”

5 66.1% “1978” 59.4% 66.1%
5.6% X “1975”
5.6% X “1995”

10 78.1% “1978” 72.8% 78.1%
7.3% X “1995”

20 78.1% X “197@” 0.0% 0.0%
7.3% X “@995”

Table 4.5: Answer quality (‘X’ marks an incorrect answer)



Chapter 5

Information Integration

The previous chapters explained uncertain data and in particular probabilis-
tic XML and querying uncertain data. This chapter focuses on one applica-
tion of uncertain data, information integration.

We sketch the whole process of information integration including several
techniques that can be used, starting from schema integration. However, the
focus of this chapter is on the integration of the actual data in the presenence
of overlapping data. We will first give an overview of the whole integration
process.

5.1 The Process

Integration of information is accessing different sources of data, containing
possibly overlapping information, as one single source. The different sources
of information may, and probably will, have different schemas to represent
the data.

When two, or more documents are integrated, several steps have to be
taken sequentially. Without loss of generality, we will restrict ourselves to
integration of two documents.

The first phase of information integration, is that of schema matching.
Mappings between the schemas of the two source documents have to be
established in order to determine which of the schema elements from both
documents are semantically similar. These mappings can be from one schema
element to one other schema element, but also more difficult mappings, such
as m to n mappings are possible [Vis07]. The problem in finding these map-
pings, is the semantical meaning of the schema, not specifically expressed in
any way in the schema itself.

The second step in the integration process, is combining the aligned

49
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schemas into one schema that will be used for the integrated document. To-
gether with the new schema, transformation rules are generated to transform
data from the schema of the original data sources to the schema of the new
data source. The data from both sources is converted to the new schema.

The third step is to identify duplicates in the data. Every element from
the first data source is compared with every element from the second data
source. If a match is found, the two elements are merged into one resulting
element, which is stored in the integrated document. If no duplicate is found,
the elements are stored in the integrated document unaltered.

5.2 Kinds of Integration

We can distinguish different kinds of integration. All are concerned with
transforming data from one schema to another, merging together data from
different sources. The differences between the kinds of integration are usually
due to prior knowledge of the source documents, or the relation between the
source documents.

• Synchronization
If one object is contained in more than one information source, after
synchronization the descriptions of the object in all information sources
have to be in agreement.

• Information Integration
In this thesis, we only consider mediated integration (Figure 5.1(a)) In
this case, multiple information sources, containing possibly overlapping
information are presented as one global information source. The infor-
mation sources are not actually integrated, but the global information
source is virtual. A component, called a mediator, acts as the global
information source. This mediator transforms queries to the global in-
formation source into queries to the underlying information sources and
gathers and combines the results from these information sources, which
can be presented as the result from the global information source. The
underlying information sources in this case remain autonomous.

• Schema Evolution
Schema evolution (Figure 5.1(b)) is accommodated when a database
system facilitates the modification of the database schema without loss
of existing information. When the schema of the database changes,
information already contained in the database, can still be accessed,
using the new schema. In the case of evolution, there is a distinction
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between materialized and mediated evolution. In the case of materi-
alized, the data is converted to the new schema, whenever the schema
changes. Data is always stored using the current schema. In case of
mediated evolution, the data is stored using the schema used to insert
the data into the database. When a query is passed to the database,
the mediator transforms the schema to match the schema of the data.

• Schema Versioning
Schema versioning (Figure 5.1(c)) is accommodated when a database
system allows access to all data, both retrospectively and prospectively,
through user definable version interfaces. The data is stored in the
database using the newest schema at the time the data was inserted
into the database. Queries to the database can use any of the schemas
ever used in the database. A mediator will have to transform the
schema to match that of the data.

The latter two definitions are taken from and further explained in [Rod95].
Evolution and versioning can be seen as specializations of information inte-
gration. In all cases, data stored using different schemas are presented as
having one schema. With integration, two or more information sources are
combined into one source. Evolution allows users of the data to access old
data through new schemas, demanding for integration of, at least, schemas
of old and new data source. Versioning allows the user to access the data
through any of the old or new schemas.

5.3 Integration Architecture

In this section, we show the integration architecture of the IMPrECISE sys-
tem and explain the functionality of each of the components. A schematic
overview of the system is given in Figure 5.2. Bottom-up, we identify the
following components

• Datasources
The underlying datasources that need to be integrated.

• Wrappers
Provide a generic interface to the underlying datasource.

• Mediator
The mediator is the central part of the integration system. It acts as a
single datasource, i.e. mediated datasource, to any user (application or
human) using the integration application. It consists of the following
parts:
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Q

(a) Mediated Integration

Q

(b) Evolution

Q Q

(c) Versioning

Figure 5.1: Schematic view of integration concepts

– Schema conversion
The rule engine in IMPrECISE makes explicit correspondences be-
tween the mediated schema and the schemas of the underlying
data sources.

– Integrator
Integrates the actual data values from the underlying information
sources, using the Oracle to make semantical decisions.

– The Oracle

Determines to what extent two tuples from the underlying infor-
mation sources refer to the same real world object. The Oracle

is responsible for decisions on semantical equivalence of elements
and uses a set of rules to decide on this equivalence.

• Application
An external application using the integration application as a DBMS.

5.4 Schema Integration

The integration of information starts at schema level. As shown earlier,
schemas of the original information sources have to be transformed in order
for the data to be integrated. The transformation of these schemas is pre-
ceeded by a matching of schemas, i.e. what parts of schema 1 match with
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Application

Mediator

schema
convertor integrator

wrapper wrapper

The Oracle

Figure 5.2: Schematic overview of IMPrECISE

what parts of schema 2. The methods used to match these schemas depend
on the kind of schemas used in the information sources. Also, if instead of
integration of data sources, evolution or versioning is used, matching will
most likely be easier, since both schemas originate from the same ancestor
schema.

The process of schema integration is discussed in section 5.4.1. Wrappers
are an important aspect of integration and these will be the topic of section
5.4.2. In section 5.4.3 we will discuss the role of mediators and the way in
which they can be designed. In section 5.4.4, matching techniques are dis-
cussed, taking into account the different types of schemas we can encounter.
Using the notion of time is helpful with evolution and versioning, this will
be the topic of section 5.4.6.

After finding mappings between elements, based on different methods, the
results of all method/mapping combinations is aggregated to find the most
likely matches. In [dV06] a framework is proposed that allows the system to
learn from previous matches. At the end of the matching phase, the user is
given the opportunity to give feedback on the matching result. The result
is stored in a Global Intermediate Schema, which is used in subsequent runs
of the schema matcher. As a result, these subsequent runs of the matcher
give an increase in matching result. Most schema matchers only consider
one to one matches. In [Vis07] a method is presented to find complex, n to
m matches, based on word frequencies in the instance data. After schema
elements have been matched, conversion functions are created to convert from
one schema to another. For one to one matches, these conversion functions
usually are trivial, this is certainly not the case for complex matches [Vis07].
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5.4.1 Integration process

The process of integrating different schemas into one global schema [SL90],
can be divided into four different phases [BLN86]:

• Pre-integration
During this phase, the integration method is chosen and additional
information is gathered.

• Comparison
Source schemas are compared and similarities and differences are de-
tected

• Conformation
If conflicts in the schemas are detected, an attempt is made to resolve
these conflicts.

• Merging and restructuring
The results of the conformation phase are merged and restructured to
ensure minimality and understandability. The result of this phase is
an integrated and deduplicated integrated document.

5.4.2 Wrappers

Wrappers provide a common interface to a data source. If we have a data
source A and a data source B, that both have different schemas, then wrap-
pers translate the interaction from the user, specified in using the global
schema, to the schema of the data source. Consider the two data sources
shown in Table 5.1. The schema which the user uses to pose queries could
be (name, room, email). In this case, firstname and name from data source
A should be mapped to name in the global schema and building and room in
data source B should be mapped to room. But wrappers should also be able
to map the other way, i.e. from user schema to actual data source. In this
case, the email address is only stored in Table 5.1(a) , whereas objects from
Table 5.1(b) do not have any email address. The integrated document, there-
fore, would give email addresses for objects found at least in Table 5.1(a) , but
leave this attribute as a NULL value for objects only found in Table 5.1(b).

Besides converting between schemas, a wrapper is also used to convert
between data models. If the global information source is presented as an XML
source, underlying information sources can still be relational, object-oriented,
or any other kind of information source. The function of the wrapper is to
convert these relational and other kinds of information to equivalent data in
the XML schema.
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(a) Data source A

name firstname room email
Doe John ZI-3122 john@doe.com
King Ed ZI-2012 ed@king.edu

(b) Data source B

name building room phone
John Doe ZI 3122 4243
Ed King ZI 2012 3519

Table 5.1: Two semantically similar data sources with different schemas

In short, the function of a wrapper is to provide a common interface to
the underlying data source. The mediated schema in Figure 5.3 can access
all data sources through a common interface provided by the wrappers in
between the mediator and the actual data source.

Designing these wrappers for various data sources is a tedious and time
consuming process. In the TSIMMIS project [CGMH+94, GMPQ+97] wrap-
pers are created semi-automatically.

5.4.3 Mediators

A mediator acts as integrated information source for several independent
autonomous information sources (see Figure 5.3). Queries passed to the
mediator are translated into queries to underlying information sources and
the resulting information is combined and presented as result of the mediated
information source. The underlying information sources are usually accessed
through wrappers.

The TSIMMIS system [GMPQ+97, GMHI+95] is a mediated system. The
system uses the Object Exchange Model (OEM) to query data.

Mediation can be looked at from different perspectives. The first way to
mediate is Global as View, or GAV. With GAV, the mediated schema is a
view on the local, autonomous data sources. The view itself does not contain
any data, but is merely a query rewriting mechanism onto the underlying
sources.

The second way to mediate is using Local as View, or LAV. Here the
different underlying autonomous data sources are treated as views of the
mediated schema. The views in, this case, contain the data. We will elaborate
on both GAV and LAV.
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Object Exchange Model

The mediator distributes the query over the different available information
sources. The mediator can do this using a uniform schema kind. The main
focus of the mediator in case of a query is distributing the query over the
information sources itself, collecting the different parts of the information
from all information sources.

In the TSIMMIS system this uniform schema is the Object Exchange
Model (OEM) [GMPQ+97, PGMW95]. Data in OEM is self-describing, i.e.
it contains its own schema and does not need an additional schema. Objects
in the model consist of four parts. They have an object ID, and a label,
which describes what the object represents. Labels are human readable and
therefore contain all information needed about the object. The third part is
a type of the value. It can either be an atomic type or set. The last part of
an object is the value, which is either an atomic value, or a set of objects,
depending on the type for that particular object.

Our address book example from Table 5.1(a) in OEM would look like

<set-of-addresses, set, {ad_1, ad_2}>

ad_1: <name-and-address, set, {fn_1, ln_1, room_1, mail_1}>

ad_2: <name-and-address, set, {fn_2, ln_2, room_2, mail_2}>

fn_1: <firstname, string, ’John’>

ln_1: <name, string, ’Doe’>

room_1: <room, string, ’3122’>

mail_1: <email, string, ’john@doe.com’>

fn_2: <firstname, string, ’Ed’>

ln_2: <name, string, ’King’>

room_2: <room, string, ’2012’>

mail_2: <email, string, ’ed@king.edu’>

Mediated schema

Wrapper Wrapper Wrapper

DB1 DB2 DBn

Figure 5.3: Mediator
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Using such a uniform schema, requires the system to have knowledge of
just one schema kind. Wrappers will transform data from the source schema
to this uniform schema and back.

Global as view

With Global as View, the mediated information source is viewed as a view
on the original information sources. Suppose we have three information
sources, addressbook (name, room, phone), addresses (name, room) and
phones (name, phone). In all sources attribute name is key. We want to
create a mediated information source which provides the same information
as initial address book example. We can compose a mediated view complete-
book as follows

CREATE View completebook AS

SELECT * FROM addressbook

union

SELECT name, room, phone

FROM addresses, phones

WHERE addresses.name=phones.name

In this example the mediated view completebook is composed of the union
of addressbook with the join of addresses and phones.

A drawback of Global as View is that extending the system with ad-
ditional information sources is hard, since the mediated schema has to be
redesigned and rebuilt.

Local as view

Local as View considers the original information source to be derived from the
mediated schema. It describes the information sources in terms of queries to
this mediated information source. Given the previous completebook example,
three views would be created, for addressbook, addresses and phones.

CREATE SOURCE addressbook AS

SELECT * FROM completebook

CREATE SOURCE addresses AS

SELECT name, room FROM completebook

and
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CREATE SOURCE phones AS

SELECT name, phone FROM completebook

The information source completebook does not exist, but is a virtual
information source composed of actual information sources addressbook, ad-
dresses and phones. Adding an information source in this case, is easy as the
information sources are independent of each other. Adding one source would
result in adding one extra query.

Querying GAV or LAV

When querying a mediated schema using GAV, the conversion to queries
on the underlying data sources is fairly straightforward. With SQL this
can be accomplished by creating a view, while using XQuery, this can be
achieved by executing the original query onto the XQueries that perform the
transformation to the mediated schema.

In a system using LAV, queries are not easily transformed, because the
mediated schema is not the view. Reconstructing which elements come from
which data sources requires going through all the view definitions of the
underlying data sources.

5.4.4 Schema matching

Before schemas can be integrated, they have to be matched first. In [RB01]
an overview is given of approaches to automatic schema matching. A hier-
archical classification of schema matching approaches is presented. Schemas
can be matched based on a number of characteristics. Names of attributes
or elements can be compared. If they match, or are relatively similar, the
attributes are matched and the associated data can be integrated. Instance
data can also be compared. If the data contained in an attribute is similar,
it is likely that the attributes have to be merged. These methods base their
decision on one property of one attribute and are therefore referred to as
element matching. Other approaches use the structure of the schema itself,
or a combination of attributes. These methods are called structure matching.

When trying to match two schemas R1 and R2, a number of situations
can occur [BLN86]. The schemas can be

1. Identical. In this case R1 and R2 are exactly the same. This is the case
for systems for which the same modeling constructs are used and the
same perceptions are applied.

2. Equivalent. In this case R1 and R2 are not identical. This is caused by
use of different modeling constructs. However, the perceptions applied
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are the same and must be coherent. Definitions of equivalence are
usually based on three different types:

(a) Behavioural. Two schemas are equivalent if for every instance
of one schema, there is a corresponding instance of the second
schema that gives the same answers to every possible query.

(b) Mapping. This is the case, when instances of both schemas can
be put in a one to one correspondence, see [Ris77].

(c) Transformational. This types of equivalence holds, if one of the
schemas can be transformed into the other by using atomic trans-
formations that make the schemas behavioural or mapping equiv-
alent.

3. Compatible. The two schemas are neither identical, nor equivalent, but
they are also not in contradiction. This means that modeling con-
structs, designer perception and integrity constraints cannot be con-
tradictory.

4. Incompatible. If two schemas are not identical, equivalent or compat-
ible, they are incompatible. The two schemas contradict, because of
the incoherence of the specification.

5.4.5 Learners

In the Learning Source Description (LSD) system [DDH03], learning mod-
ules, called base learners, are used. Each base learner uses well one certain
type of information to find semantical mappings between schemas.

There are many different base learners. Examples include: Name Learn-
ers, Naive Bayes Learner, Content Learner and XML Learner. The Name
Learner matches elements based on their name. In case of XML, this name
is the tag name. The learner can use lists of synonyms to match similar,
but not equal names. The Content Learner matches elements based on the
content of the attribute. In case of XML, this is the data value of the XML
element. The learners use a set of recognizers, which are each capable of
recognizing a certain kind of item, i.e. a zip code or a phone number. A
schematic example of learner process is shown in Figure 5.4.

The base learners are first trained in a phase called the training phase.
During this phase, the user has to confirm the results so the learner knows
if the results are correct. After this training phase, the learner can be used,
this is called the matching phase [Hal04].



60 CHAPTER 5. INFORMATION INTEGRATION

base
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Figure 5.4: Using Learners

Base learners know how to map on schemas, using one technique. Meta
Learners combine the results of base learners to match using multiple tech-
niques. See [DDH03].

5.4.6 Using time

If we allow the schema of an information source to change over time, data
stored at different moments can have different schemas. A query to this
information source should, at a minimum (evolution), be possible using the
latest version of the schema. To keep track of the version used for particular
parts of the data, a notion of time can be added to the schema and data.
There is much overlap with this kind of time usage and time in temporal
databases.

Time can be used to help the schema integration process. When decisions
about validaty need to be made, often newer schemas are considered to be
more accurate than older schemas. In case of evolution and versioning, the
order of schemas can be determined by looking at time of instances contained
in the database.

Different notions of time can be used to accommodate for different func-
tionality of the system. Keeping track of the original schema of a particular
part of the data is one aspect, but also rolling back the information source
to a prior state, or being able to answer time related queries, are possibilities
of using time.

Valid time

The first notion of time that can be included in an information source is the
time at which the recorded event occurred. Suppose we change the address
of one of the persons in our address book, indicating this person has moved.
We can attach a time stamp to this record indicating from which point in
time this record is valid. This kind of time is referred to as valid time.
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With valid time, we can ask the information source questions like: What
was the address of person X on February 2nd last year. A schematic repre-
sentation of valid time is given in Figure 5.5

Transaction time

Another notion of time, is the time when the record was inserted into the
information source. If all the records are associated with such a time stamp
and provided that deletions are also recorded, we can reconstruct the infor-
mation source for a certain date and time. The time recorded is the time
at which the transaction occurred that created that particular record, and
is therefore referred to as transaction time. Transaction time enables the
system to do a roll back to any particular point in time. This is shown in
Figure 5.6.

User defined time

The last notion of time we discuss, is already present in current relational
database systems. If the user wants to represent time, he can use the DATE-
TIME type. The database system itself regards this information as just
another type of data. From the database point of view there is no special
meaning associated with this type of time and it is therefore known as user
defined time.
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5.4.7 Semantics of schema

As indicated earlier, the semantics of schemas is important when integrating
data sources. Only semantically similar data can meaningfully be integrated.
A possible and commonly used solution when the semantics of schemas is
unclear, is to let the user provide the semantics. Most of the time, this is
done by letting the user specify how the data has to be integrated. In the case
of the LSD system, this is achieved by first specifying mappings manually in
the training phase. Next, in the matching phase, the system can match the
schemas automatically.

Another method to collect semantical information is to use an ontology,
indicated by [Ver97]. This process, however, is error prone since ontologies
may be outdated when used in a new setting. Therefore, when using ontolo-
gies they should be up to date and accurate. Another problem that arises
when using ontologies for integration of information sources, is that they
would have to support versioning and/or evolution as well [NK]. This is
needed, because when schemas evolve, the matching concepts in ontologies
should be able to evolve as well.

5.5 Data Integration

From this point on, we assume schema integration to be resolved and we will
focus on the problem of data integration. At data integration time, elements
from different sources have to be merged into a new data source. There can
be, and usually is, overlap between data from one source and data from the
other source. By overlap we mean elements referring to the same real world
object, but not necessarily containing exactly the same information, or even
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the same kind of information. This was already shown in Table 5.1 where
the two tables contain address books, but only the first table (Table 5.1(a))
also contains the email address.

Because the data sources may not contain the same kind of information,
it is difficult to make a positive decision about equality of elements. Partly
because of the semantics hidden in the schema. If, for example, the name
elements don’t correspond the likelihood of address book elements referencing
the same person is low, whereas if just the email addresses don’t correspond
and taking into account that people have more email addresses and even
change their address from time to time, the likelihood here is higher.

5.5.1 General approach

A device’s database is a probabilistic XML document. When data integration
with a foreign probabilistic XML document is initiated, the foreign document
is considered to be a source of ‘new’ information on real world objects the de-
vice either already knows about or not. New information on ‘new’ real world
objects is simply added to the database. Any differences in information on
‘existing’ real world objects are regarded as different possibilities for that ob-
ject. Note that we disregard possibilities concerning order. New information
on ‘new’ real world objects is simply considered to come after information
on known objects in document order.

Since it is often not possible to determine with certainty that two specific
XML elements correspond to the same real world object, we use a rule engine
that determines the probability of two elements referring to the same real
world object. In special cases, this rule engine may obviously decide on a
probability of 0 (with certainty not the same real world object) or 1 (with
certainty the same real world object). The rule engine, or Oracle, will be
explained in section 5.6. In this section, we abstract from the details of the
Oracle, but imagine that it uses schema information to rule out possibilities.
Or it may, for example, consult a digital street map to declare a certain street
name very improbable as there exists no such street in that city. Or it may
use Semantic Web techniques to reason away possibilities.

On top of the Oracle, the integration system uses two rules to further
limit the decisions about integration.

• The schema states that a certain element can appear only once. We as-
sume that this means that the elements of both documents refer to the
same real world object, hence, the subtrees are correspondingly merged.
For example, if two person elements refer to the same real world person,
their descendant elements that are declared in the schema as appearing
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only once (e.g., nm and tel) are merged. If two corresponding descen-
dant elements differ, we store this as two possibilities for that element.

• The schema states that a certain element can appear multiple times.
We assume that this means that the foreign document may contain new
elements for this list. For example, the database contains knowledge
about two persons “John” and “Rita”. The foreign document holds in-
formation on a person “Jon”. Note that “Jon” may be the same person
as “John” only misspelled, or it may refer to a different person. The
data integrator will store both possibilities, i.e., one whereby it merges
“John” and ”Jon”, and one whereby it adds a new person element.

Each possibility is assigned a probability by the Oracle. For example, it
is not unthinkable that “Jon” and “John” are actually the same person. On
the other hand, it is rather improbable that “Rita” and “Jon” are the same
person.

The minimal set of rules used by our prototype also includes that there
can only be one root in an XML document and schema’s of integrated docu-
ments are the same, so different tag names are assumed to refer to different
real world objects.

5.5.2 Integrating sequences

In general, integrating sequences produces possibilities for all elements re-
ferring to either the same or different real world objects. Since we made an
assumption that the schemas are the same and that elements with different
tag names refer to different real world objects, many of those possibilities are
ruled out. However, this rule does not limit the possibilities for sequences of
elements with the same tag name.

Example 8 We integrate address information of people. We are confronted
with integrating sequences of person elements. Because our basic Oracle con-
tains very limited knowledge, any two elements, one from each sequence,
possibly refer to the same real world object. Therefore, when merging two
sequences, X and Y , the resulting number of possibilities can be huge.

Let, for example, X = [A, B] and Y = [C, D]. The possibilities to be
generated during integration of X and Y are listed in Table 5.2. In the
table, A = C indicates that A and C are considered to refer to the same real
world object, hence, they should result in a single possibility where A and
B are merged: A/B. Since the database already represents all possibilities
explicitly, we do not need to consider two elements from one sequence to refer
to the same real world object, so A = B and C = D are not valid possibilities.
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Referral to real world object resulting sequence
A 6= B 6= C 6= D A, B, C, D

A = C, B 6= C 6= D A/C, B, D
A = D, B 6= C 6= D A/D, B, C
A 6= C 6= D, B = C A, B/C, D
A 6= C 6= D, B = D A, B/D, C

A = C, B = D A/C, B/D
A = D, B = C A/D, B/C

Table 5.2: Possibilities for merging sequences x = {A, B} and y = {C, D}

Integration formally defined

We now formally define integration of two sequences of elements. There
are two sets that are important during this phase. The first set is those
element combinations that are certainly referring to the same real world
object. This subset is called Must and contains exactly those (element,
element) combinations for which the Oracle predicted a confidence score of
1. The other important set during this phase, is called Not and contains
all those (element, element) combinations for which the Oracle predicted a
confidence score 0 and these combinations should therefore not be included
in the integrated document.

We first introduce some notation.

A → B = {f ⊆ A × B|(∀a∃1b • (a, b) ∈ f}

A ↔ B = {f : A → B|(∀a, a′ • fa = fa′ ⇒ a = a′)}

Given A, B, Must : A ↔ B, Not ⊆ A × B
The integrated document R is defined as follows:

R = {f : A ↔ B|Must ⊆ f ∧ (f ∩ Not = ∅}

Document R contains all those sets of (element, element) combinations, such
that it includes Must and does not include any of the (element, element)
combinations of Not.
We now define a function Compl that completes the integrated document
with all possibly integrated elements. We start with Must and add to it
those (element, element) combinations that are not in Not. The result of
Compl is the fully integrated, uncertain document.
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Compl(f, A′, B′) = {g : A′ ↔ B′|g ∩ Not = ∅ • f ∪ g}

then,

Compl(Must, A \ dom(Must), B \ ran(Must))(5.1)

= {g : (A \ dom(Must)) ↔ (B \ ran(Must))|g ∩ Not = ∅ • Must ∪ g}(5.2)

= {f : A ↔ B|f ∩ Not = ∅ ∧ f ⊇ Must • f}(5.3)

From step 2 to 3 we assume Must∩Not = ∅. This assumption always holds,
since Must contains exactly those element combinations where the Oracle

predicted a confidence score of exactly 1, whereas Not contains all those
combinations where the Oracle returned a confidence score of 0. The Oracle

only provides one confidence score for each (element, element) combination
and can therefore never return both 1 and 0 as scores. As a result Must ∩
Not = ∅ always holds.

As can be seen from the formal definition, the number of possibilities
generated from integrating two sequences is large, even for small documents.
We show how many possibilities are generated if no world knowledge is taken
into account. When all elements of X and Y refer to other real world objects,
the number of resulting possible worlds is 1. But, when one element from
X refers to the same real world object as an element from Y , there are
X × Y possible ways how this can be done, since every element from X can
in principle be matched with every element from Y .

In general, if i elements from X match with i elements from Y , then the
number of possible ways to merge i elements from X with i elements from Y
can be computed as follows. In the following, i < min(x, y), where x is the
number of elements in X and y is the number of elements in Y .

Choose i different elements from X, where the order of choosing the
elements is unimportant, but an element cannot be chosen more than once.
This can be done in

(

x

i

)

= x!
(x−i)!i!

ways. Then, we choose i elements from Y

to merge with those chosen from X. Since the first chosen element from X
should be merged with the first element chosen from Y , order is important
when choosing elements from Y . The number of ways to choose the i elements
from Y is y!

(y−i)!
.

The process of merging sequences is commutative, we assume x ≤ y. In
determining all possibilities, any i (0 ≤ i ≤ x) elements of X may refer to
the same real world object as elements of Y . Therefore, the resulting total
number of possibilities for a merged sequence is

x
∑

i=0

(

x
i

)

×
y!

(y − i)!
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We see from this formula, that merged documents can become huge quite
rapidly. If we take, for example, x = 5 and y = 5, then the maximum
number of possibilities is 1546. The rule engine, however, may rule out
certain possibilities. For example, if in the case of Table 5.2, A refers to a
person named “John” and C to a person named “Rita”, the rule engine may
assign probability 0 to the likelihood that A = C. In this way, it rules out
two of the seven possibilities.

Integration method implementation

We implemented the integration method in XQuery. The implementation is
kept as close to the formal definition as possible. A pseudo code implemen-
tation of the algorithm is given in Figure 5.7.

Below, we first show an example of integrating two certain trees to illus-
trate the recursive process.

The data integration function integrate takes two parameters D1 and D2.
It returns the integration result as a probabilistic XML tree. In the diagrams
below, we have omitted probability and possibility nodes whenever there is
only one possibility.

The example below shows how we can recursively integrate two certain
trees.

integrate()
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After the first integration step, we obtain:
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The second integration step integrate(’John’, ’Rita’) results in the final
integrated document
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complete(A,B,Not) : P(A × B)
begin

result := ∅
for each a ∈ A, b ∈ B

if ( (a 7→ b) /∈ Not )
then c := complete(A \ {a},B \ {b},Not)

result := result ∪ {c, {(a 7→ b)} ∪ c}
return result

end

combinations(A,B) : P(A × B ∪ A ∪ B)
begin

mustbe := ∅; not := ∅; result := ∅
for each a ∈ A, b ∈ B

o := oracle(a,b)
if (o = 1) then mustbe := mustbe ∪ (a 7→ b)
else if (o = 0) then not := not ∪ (a 7→ b)

c := complete(A \ dom(mustbe), B \ ran(mustbe), not)
for each f in c

f’ := f ∪ mustbe
result := result ∪ {f’ ∪ A \dom(f’) ∪ B \ran(f’)}

return result
end

integrate(E1,E2)

begin

if (E1 and E2 are text nodes)

then if (E1/text() = E2/text())

then result := <prob><poss>E1</poss></prob>

else result := <prob><poss>E1</poss><poss>E2</poss></prob>

else

A:=E1/child::node(); B:=E2/child::node(); E:=E1/name()

comb := combinations(A,B)

result := <prob/>

for each f in comb

p := <poss/>

for each m in f

if (”m of the form (a 7→ b)”)

then p.addchild(<E>integrate(a,b)</E>)

else p.addchild(m)

result.addchild(p)

return result

end

Figure 5.7: Integration Algorithm
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Observe the difference between integrating person elements, which are
specified as being part of a sequence, and other elements for which there can
only be one, for example the name node. The former produces an additional
possibility for the case that there exist two persons. In general, text nodes are
also part of a sequence (e.g., paragraphs in a text document). Concatenating
names of persons, however, does not make sense, so the integration system
decides that, for example, the name of a person can not be “JohnRita”.

5.5.3 Equivalence preserving operation

An interesting property of the data integration approach described above,
is that it preserves equivalence. Let D1 and D2 be two probabilistic XML
documents and A = integrate(D1, D2) the result of integrating them. Sup-
pose D′

1 and D′
2 are equivalent to D1 and D2 respectively. Is then A′ =

integrate(D′
1, D

′
2) equivalent to A? Although proving equivalence preserva-

tion is feature research, we give an example that illustrates this property.

There is a special case for which this property is especially interesting.
The set of possible worlds can be represented as a probabilistic tree with
one probabilistic node as root and all possible worlds as possibilities directly
below it. Figure 3.3(a) is of this form. Since the above property holds,
integrating two probabilistic trees amounts to integrating all combinations
of possible worlds of both trees.

We first show the integration of a compact tree with two possibilities
with a certain tree. Next, we show the integration of an equivalent tree in
set-of-possible-worlds representation with the same certain tree.

The algorithm presented in the previous section, integrates two certain
documents, producing one uncertain integrated document. Here we show
based on an example, the method to integrate a probabilistic tree and a
certain document.

integrate()
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We would first integrate both person elements:
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where
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The entire resulting tree looks like:
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If we restrict ourselves to names of persons, the resulting document can be
described using a simplified form of boolean notation, as:

(Rita ∨ John ∨ Jon) ∨ ((John ∨ Jon) ∧ Rita) (5.4)

Moving the local possibility upwards in the tree, we get an equivalent
less compact tree that is in all-possible-worlds representation. The integrate

function now behaves as being applied to each possible world separately.
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We integrate the person named “Rita” over both possibilities resulting in
the following:
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The final result is:
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The boolean representation is

((John ∧ Rita) ∨ (John ∨ Rita)) ∨ ((Jon ∧ Rita) ∨ (Jon ∨ Rita)) (5.5)

Note that this is equivalent to the earlier obtained boolean representation.
The trees are equivalent.

5.6 The Oracle

As explained earlier, the rule engine determines in some way the probability
of the various possibilities. Reasoning and the use of information from schema
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and other data sources can be used to limit the number of possibilities, but
also to better assign probabilities.

There are several simple schemes to assign probabilities. A first scheme,
which can be described as the doubter, would assign probabilities as follows.
Whenever the database conflicts with a foreign document one some element,
we assign probability .5 to each resulting possibility. This approach has a
severe drawback. For example, when a mobile device has once heard from
another device that a person’s name is “John” and it meets another device
which says its name is “Jon”, the scheme assigns the possibilities “John” and
“Jon” each a probability of .5. But, when it has already heard from ninety-
nine different devices, that the name of the person is “John”, it should be
very suspicious when it meets a device that says this person’s name is “Jon”.
Therefore, it should give the possibility “Jon” a very small probability of,
say, .01.

The basic rule engine of our prototype has a still simple but sufficient
scheme for assigning probabilities. It is based on the premise that what you
have seen twice, is twice as likely to be correct. In other words, a confidence
score should be kept in the data. This factor is an indication of how certain
we are about the data, which helps in assigning probabilities when integrating
new data. Every time a different device claims a certain possibility is true,
the confidence score is increased by one.

In addition, to decide if two elements refer to the same real world object,
we introduced a new component called The Oracle. The Oracle compares two
elements and returns the likelihood that these elements are equal.

5.6.1 Entity Resolution

Entity resolution is the process of identifying elements that refer to the same
real world object. With probabilistic data, the result of entity resolution is
an uncertain answer with an associated probability.

Definition 8 A match function is a function of the form m : (n1, n2) 7→
[0, 1], that indicates to what extent elements n1 and n2 refer to the same real
world object, using the criteria of that particular match function.

Match functions can be designed to work on different levels in the XML
tree. One match function, for example, can be used to specifically match
phone numbers, while another match function can be used to match complete
person elements. Therefore, a combination of different match functions needs
to be used to obtain a correct result. Combining the results of different match
functions, is the task of a component called The Oracle.
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Definition 9 The Oracle is a function of the form O : (n1, n2) 7→ [0, 1]. The
result of this function is the weighted average of match functions.

The result of different evaluation functions are combined using a weighted
average and returned as the result of the Oracle.

Example 9 Consider the movie example, where movies have a title, a year
and a set of cast members. Match functions can be defined for all of these
elements and an additional match function can be defined for movies as a
whole.

5.7 Summary

The uncertainty model described in chapter 3 is used in the integration
method described in this chapter. By allowing the result of the integra-
tion application to be uncertain, the results can directly be used without
involvement of a human to make decisions on equality.
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Chapter 6

Reducing Uncertainty

Although the goal of uncertain data management is to be able to capture
possible uncertainty in the data, it is desirable to limit the amount of uncer-
tainty. In all applications discussed previously, except for updating uncertain
data, the amount of uncertainty can only grow. In this chapter, we intro-
duce two methods to reduce the amount of uncertainty in the data. The first
method, using knowledge rules during integration time, doesn’t require any
user interaction, while the second method, user feedback, requires user inter-
action at query time. First, we’ll present a movie database scenario where
two movie databases are integrated. This example shows the explosion of
uncertainty and is used to illustrate both reduction methods.

6.1 Movie database scenario

Without world knowledge, integrated information sources can become very
large. As explained, this is due to the fact that many things, however re-
motely possible, are in principle possible. The example of Section 5.5.2
shows that for the integration of two data sources with each two data items,
there are already seven possible worlds. In [KKA05], we calculated that for
two data sources with each five data items each carrying four children, there
are in theory 1546 possible combinations between the elements from both
information sources.

But this is theory and these are small examples. To be able to get a feel
for the size of the problem in practice, we investigate a scenario in which we
attempt to integrate a number of data sources on the web containing movie
information. Table 6.1 shows several interesting data sources that may be
used. There are many movie data sources with similar kinds of information
about many movies, such as IMDb, All Movie Guide and Yahoo! movies. But
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Source #movies Description of information of-

fered

Internet Movie
Database [IMD]

470,000 movie details, plot summary, cast,
other people involved, genre, goofs,
quotes, trivia, user comments,
awards, user rating, etc.

All Movie Guide
[AMG]

290,000 movie details, plot summary, cast,
other people involved, genre, key-
words, themes, moods, etc.

Yahoo! movies [Yah] unknown movie details, plot summary, cast,
other people involved, genre, user
comments, photos, critics reviews,
etc.

Simply Scripts [SS] 1,500 title, directors, transcript

Table 6.1: Some movie sources

there are also data sources that have very specific data about only a limited
number of movies, such as Simply Scripts offering transcripts of what is said
in a movie. Integrating the information of such data sources may have much
added value.

Main cause semantic equality problem

The main cause for explosion in the number of possible worlds is the semantic
equality problem: How to decide whether or not two data items refer to the
same real-world object? Without world knowledge, any movie data item
may in theory be semantically equal to any other movie data item in another
data source. This is caused by the fact that without world knowledge a
system is unable to decide where the boundary is between two descriptions
referring to the same real world object or not. When integrating sources with
hundreds of thousands of movies, the number of possibilities are enormous,
most importantly too many to handle. In the following example, we show
the semantic equality problem.

Example 10 Consider the two XML documents from Figure 6.1. In the first
XML document (Figure 6.1) the address information about a person named
Elisabeth Stone is stored. The second document contains information about
a person Beth Cold. If we just consider the first names, we could conclude
that both documents are about the same person. In the first document, her
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<person>
<name>El i s abe th Stone</name>
<t e l >1234</ te l >
<address >610 El Camino Real</address>
<c i ty>Palo Alto</c i ty>

</person>

<person>
<name>Beth Cold</name>
<t e l >5678</ te l >
<address >2020 C a l i f o r n i a Ave.</ address>
<c i ty>Mountain View</c i ty >

</person>

Figure 6.1: Semantic equality problem

official name, Elisabeth, is used, but she is normally called Beth, which is
stored in the second document After the creation of the first document, she
could have married a person with last name Cold and together have moved
to a new address, also obtaining a new telephone number.

Some features of a data item, however, are often known to be keys or
key-like, hence can be used to determine whether or not two data items refer
to the same real-world object. For movies, we found for example many data
sources including the IMDb number. This number can be used to determine
with absolute certainty that two movie data items actually refer to the same
movie. There is an important assumption here not to be neglected: This
assumes that the data is correct. If not, we may erroneously decide that two
data items are the same. If we drop this assumption, we need to consider the
possibility that even if IMDb numbers are equal, this does not automatically
determine equality on movies. Furthermore, it may also happen that two data
items that do refer to the same movie, are not detected as such, resulting
in duplication of information. Unfortunately, not all movie data sources
include the IMDb number, but they do include the title, an attribute that is
also almost always correct and very discriminative. But it is not a key: there
are, for example, three movies called “King Kong”, namely the 1933, 1976,
and 2005 versions. Together with the year attribute, which is almost always
also included, we do have a good alternative key.

Other causes for explosion in the number of possible worlds are differences
in which attributes are included and actual attribute values that do not
correspond. To get a feel for this problem, Table 6.2 investigates in more
detail the data given for the 2005 “King kong” movie by the first three data
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Attribute Comparison

Title/Year Exactly equal in all three sources.
Genre IMDb gives ‘Action’, ‘Adventure’, ‘Drama’, ‘Fantasy’,

‘Sci-Fi’, and ‘Thriller’. AMG gives ‘Adventure’, ‘Mon-
ster Film’, and ‘Period Film’, hence only one in com-
mon. AMG has other genre-like attributes like keywords,
themes, tones, and moods, but these do not overlap with
any IMDb genre. Yahoo gives ‘Action/Adventure’, ‘Ro-
mance’, ‘Thriller’, and ‘Remake’.

Cast IMDb presents a cast of 15 people, AMG 11, and Yahoo
13. All provide both the names of the actors as well as
whom they play in the movie. The 11 actors of AMG
are all present in both IMDb and Yahoo. The 2 extra
actors of Yahoo are different from the 4 extra of IMDb.
Furthermore, there are three differences in spelling.

Location IMDb has a ‘Country’-attribute with value “New Zealand
/ USA”. AMG has ‘Filming location’ with value “New
Zealand”. Yahoo has ‘Filming Locations’ with value
“Wellington, New Zealand (Campertown Studios - Stone
Street Studios)”.

Plot summary All three sources have a different description or plot sum-
mary.

Table 6.2: Comparison of information on the 2005 movie “King Kong”.

sources of Table 6.1. What we can observe is the following:

• The ‘Title/Year’ information can indeed be used to exactly match the
corresponding items in all three sources.

• The ‘Genre’-attribute contains more differences than correspondences.
In general, other movies show more correspondences, but they almost
never completely agree. This is due to the subjective nature of the
attribute and the usage of different terms. Assuming different strings
indeed represent different genres, our information integration approach
will result in a list of terms for this attribute whereby for each term it
is uncertain whether or not the term is actually a member of the list.
‘Adventure’ will be the only one about which certainty exists (provided
that the integrator separates the combined “Action/Adventure” genre
description of Yahoo).
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• The ‘Cast’-attribute is technically speaking also a simple list of strings.
The difference with ‘Genre’ is that it is much more factual data, hence
much less differences can be observed. Even with factual data, however,
we observe that the three sources do not fully agree on ‘the cast’ of the
movie. There are 11 names that belong to the cast with certainty, but
there are also 6 more names that are given by only one of the three
sources.

• The ‘Location’-attribute also concerns factual data. Although all sources
agree that the filming location is “New Zealand”, the actual string val-
ues are far from the same. Integrating this attribute with the ap-
proach of Chapter 5 results in three possibilities for the attribute.
The uncertainty, however, is local. A query asking for movies filmed
in New Zealand contains a predicate like contains(location,‘New

Zealand’) or even location=‘New Zealand’. In our probabilistic
XML approach, such a query will find the movie “King Kong” although
the query answer of the latter will have a lower probability assigned to
this movie [KKA05].

• Attributes like ‘Plot summary’ completely differ for the three sources.
In principle, all information sources are correct: All descriptions are
valid descriptions of the movie. Similar to ‘Location’, our integration
approach treats this as three local possibilities, which does not have
significant negative effects on querying.

• Finally, if we were to also integrate Simply Scripts, we observe that it
is possible to find the corresponding movies using Title/Year. Proba-
bilistic XML trees can represent uncertainty about the existence of a
subtree. Integration with Simply Scripts would result in local uncer-
tainty about whether or not an attribute ‘transcript’ exists in the real
world.

We can draw several conclusions from the analysis of the movie scenario.
First of all, due to the existence of keys or key-like attributes, the explosion of
possibilities resulting from the uncertainty about semantical equality of data
items from different sources can be greatly reduced. The only uncertainty
remaining is local for an attribute. With the compact representation of a
probabilistic XML tree, the storage requirements for these local possibilities
are not expected to be large [KKA05]. Furthermore, querying the resulting
integrated data collection is not expected to suffer significantly from the
incurred uncertainty. Items can still be found, some items may only have
a reduced probability of being correct, because if the data is present before
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integration, i.e. at least one of the sources contains the correct information,
it will also be included in the integrated document. Querying, in this case,
returns the desired movie, possibly including different possibilities for some,
or all of the subelements, but still containing all the desired information.

Most importantly, with some simple world knowledge statements such as
‘Title/Year is a key’, the number of possible worlds can be greatly reduced
to a manageable size. Further world knowledge can even resolve local un-
certainties, for example with statements like ‘non-existence of a transcript
is not a conflict, simply take it if available’. The same holds for genres and
names in a cast.

6.2 Knowledge Rules

In Chapter 5, we did not use any world knowledge when integrating informa-
tion sources. As a result, the number of possibilities in the resulting infor-
mation source was huge. The size of this result can be reduced drastically,
just by using very simple rules about the real world.

Knowledge rules can be either generic, such as

If two elements have at most one element for which the value

differs, the elements can possibly refer to the same real world

object

and domain specific rules, such as

If title elements of movies match, then the movies themselves

match

As can be seen from the above two examples, knowledge rules give an
absolute statement about if two elements refer to the same real world object.
According to such a rule two elements are either referring to the same real
world object, or they are not. A knowledge rule can therefore be defined as
a function that takes two elements as input and gives a boolean as output,
indicating if the elements refer to the same real world object (true), or not
(false).

Definition 10 Let r : (element × element) → boolean be an interface to a
function that returns if, based on its implementation the two elements given
as parameters possibly refer to the same real world object.
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In case the elements are considered not to refer to the same real world
object, they are not integrated, hence not passed to the Oracle for evalua-
tion. All element combinations that are positively evaluated by all enabled
knowledge rules, are being passed to the Oracle. If none of the knowledge
rules is enabled the Oracle determines if elements possibly refer to the same
real world object alone. Knowledge rules, therefore are used to reduce the
number of possible matches, instead of indicating if two elements actually
refer to the same real world object. By using combinations of knowledge
rules, the accuracy of the process increases.

Example 11 In the movie example, we have defined several knowledge rules.
The first knowledge rule is a refinement of the one given earlier, that states
that two movies are not equal if their titles are not similar. Similar in this
case is based on the edit-distance of the movies. Movies with titles “King
Kong” and “Die Hard” would, according to this rule, not be considered to
refer to the same real world object. As a result, they are not passed to the
Oracle for comparison.

Since in XML elements are nested, a knowledge rule can also use subele-
ments of elements passed to the rule. In this way, more elements at the same
time can be included in the decision process.

6.2.1 Experiments and Evaluation

In these experiments we show the effect of the rules we introduced. We show
that some rules are more restrictive than others. In our experiments, we used
documents with the following DTD.

< ! DOCTYPE per sons [
< ! ELEMENT per sons ( person ∗) >

< ! ELEMENT person ( f i r s tname , lastname , phone , room)>
< ! ELEMENT f i r s tname (#PCDATA) >

< ! ELEMENT lastname (#PCDATA) >

< ! ELEMENT phone (#PCDATA) >

< ! ELEMENT room (#PCDATA) >

]>

We defined several knowledge rules. The first two are generic.

• Single Element Rule
This rule considers object descriptions to refer to the same real world
object, if one or more of the elements in both sources have the same
value.
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• 50% Rule
This rule considers object descriptions to refer to the same real world
object, if at least 50% of the elements in both sources have the same
value.

Although the single element rule already rules out many possibilities, the 50%
rule is much more restrictive and will eliminate more possibilities than the
single element. Note that there is a trade-off between using more restrictive
rules, resulting in smaller integrated documents, but possibly losing some
desired matches and less restrictive rules that produce larger documents, but
do produce these matches.

We also defined two domain specific knowledge rules, that take into ac-
count the fact that the data source contains information on persons, which
have names.

• Firstname rule
This rule considers data items to refer to the same real world object, if
the firstname of both data items is equal.

• Lastname rule
This rule considers data items to refer to the same real world object, if
the lastname of both objects is equal.

We also defined some rules that are a combination of the previously defined
rules.

• Combination rule 1
This rule combines the 50% rule and the Firstname rule.

• Combination rule 2
This rule combines the 50% rule and the Lastname rule.

• Combination rule 3
This rule combines the Firstname rule and the Lastname rule and is
therefore also referred to as the Fullname rule.

To keep the examples readable, we only show the name attribute of a per-
son. Whenever the other elements have an effect on the integration process
or result, we mention them specifically.

In our experiments we used the two address book documents given in Fig-
ure 6.2. Using the integration method without knowledge rules, the number
of possible worlds in the result document is 1815. This explosion of possible
worlds is caused by the fact that every element from the first source can
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possibly refer to the same real-world object as any element from the second
source. For example, there is a remote possibility that even Mark Hamburg
and Allen Kingship refer to the same person in reality.

We performed 7 experiments: one for every knowledge rule.
The simplest of the knowledge rules, the single element rule, already

reduced the number of possible worlds to 39. This is a reduction of almost
98%, while the actual knowledge introduced is minimal: if two data items
do not agree on any attribute, we decide that they do not refer to the same
real-world object.

The 50% rule reduced the number of possible worlds to just 15, as do the
firstname rule and combination rule 1.

The best result is achieved by using the Lastname rule, combination rule
1, or combination rule 3. These rules reduce the number of possible worlds
to only 3. Combination rule 2 can be compared with combination rule 1, in
the sense that a special emphasis is placed on one of the elements, in this
case the lastname element.

We should, however, avoid adding world knowledge that does not hold
in general. For example, if document 1 would have had the data item ‘John
Kingship / 4030 / 3035’, it is actually very likely that this data item does
not refer to the same real world object as ‘Allen Kingship / 2020 / 3035’.
The 50% rule is in this case not a good knowledge rule, because it rules out
possibilities that are likely to be true. Good knowledge rules are those that
have little or no false positives.

6.3 User Feedback

The previous section described the knowledge rules that can be used to reduce
the amount of uncertainty. These knowledge rules are primarily used in The

Oracle and therefore more suitable for applications such as data integration.
The method described in this section is user feedback and is more application
independent. We’ll discuss the feedback process itself, the types of feedback
that can be given and the effect feedback has on the uncertainty in the
database in terms of the set of possible worlds. We will first extend the
information cycle with the feedback process.

6.3.1 Information Cycle

When a query result is returned to the user, he is already involved with the
system and feedback on the validity of the query result can easily be given.
Uncertainty can be reduced by giving feedback on query results. Because the
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user posing the query also observes the real world, he can determine whether
certain query answers are for certain correct or incorrect. By giving feedback
in such cases, the database may conclude that certain possible worlds can
no longer be correct and eliminate them. Feedback, in contrast with both
integration and updating, can never introduce new worlds, or new elements
in worlds.

The cycle of repeated observations and information integration introduces
possible worlds, the cycle of repeated user feedback eliminates them. In this
way, the uncertainty in the information in the database keeps reflecting the
actual uncertainty about the state of affairs in the real world.

6.3.2 Types of Feedback

Consider the query given previously asking for the phone number of persons
named “John”. The answer (see Figure 6.4) is uncertain: either ("1111"),
("2222"), or ("1111","2222"). A user could readily verify these answers,
for example, by calling one or both phone numbers and checking if the person
on the other end of the line is named “John”. He could then indicate his
findings by stating for some query results whether they are true or false in
the real world. The goal of our user feedback technique is to use this infor-
mation to update the information in the database accordingly, thus reducing
uncertainty. We claim that a semantically correct way of doing this, is by
invalidating entire possible worlds that disagree with the statement on the
query result. For example, if a person named “John” picks up the phone
when dialing “1111”, then this is apparently a correct answer, hence any
possible world not producing “1111” as an answer can be eliminated. This
leaves two possibly correct possible worlds. Note that stating that “1111”
is a correct answer, does not imply that “2222” in the answer is incorrect,
since “2222” may be the phone number of another person named “John”;
this corresponds with the third possible world.

We distinguish two types of feedback: positive and negative feedback.
With negative feedback, the user indicates that one or more possibilities from
the query result do not correspond with his knowledge of the real world. Pos-
itive feedback indicates that the user is certain that one or more possibilities
from the query result correspond with the real world. Let RWuser be a user’s
certain knowledge of the real world. For simplicity, we represent RWuser with
an XML tree, i.e. RWuser ∈ Tfin.

Definition 11 Let Qq(PT ) be a set of possible query answers for some query
q and probabilistic XML tree PT, and S ∈ Qq(PT ) In XQuery and XPath,
a query answer is always a sequence, so we assume S to be a sequence.
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Negative feedback is a statement “a is false” for some a ∈ S. The meaning
of this statement is a 6∈ Qq(RWuser ). Analogously, positive feedback is a
statement “a is true” meaning a ∈ Qq(RWuser ).

Qq(PT ) = {(”1111”), (”2222”), (”1111”, ”2222”)} in our example, which
in a system will probably be represented as {”1111”, ”2222”}. The posi-
tive feedback that “1111” is a correct phone number means that ”1111” ∈
Qq(RWuser), i.e. the user states that the combination (“John”, “1111’) is for
certain known by him. As a result, all worlds represented by the database,
that do not contain (“John”, “1111’) are deleted from the database.

6.3.3 Effect of Feedback

As stated before, our approach is to invalidate, or rather eliminate, those
possible worlds from the database that do not correspond with the user’s
knowledge of the real world.

Definitions 12 and 13 show how to construct the new possible worlds after
giving positive and negative feedback, respectively.

Definition 12 Let PT ′ be the result of user feedback “a is true” for some
database PT, query q, and a ∈ S, where S ∈ Qq(PT ). PT ′ is defined by
PWSPT ′ = {T ∈ PWSPT | a ∈ Qq(T )}

Definition 13 Let PT ′ be the result of user feedback “a is false” for some
database PT, query q, and a ∈ S, where S ∈ Qq(PT ). PT ′ is defined by
PWSPT ′ = {T ∈ PWSPT | a 6∈ Qq(T )}

Observe that definitions 12 and 13 shows that we only need to eliminate
possible worlds from the database. It is never necessary to create a possible
world, create or delete a local possibility, or change or delete a part of a
possible world. This is explained by the fact that from the set of original
worlds, we select only those new worlds satisfying the feedback constraints,
leaving out those that do not satisfy the feedback. As a result, whole possible
worlds are either kept, or deleted. Because feedback deletes entire worlds, it
is a powerful mechanism and should be used with caution. We will address
this more thoroughly in section 6.3.6.

We have defined PT ′ by means of its possible worlds. Note that it is
not hard to construct PT ′ from the set of possible worlds. Simply create
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a probability node with as many children as there are possible worlds. At-
tach each possible world, which is a certain probabilistic tree as subtree (see
Figure 6.5). In this way, we obtain a probabilistic tree representing exactly
this set of possible worlds. Any probabilistic tree equivalent with a PT ′ con-
structed in this way, preferably the compact representation, can be used as
resulting database.

6.3.4 Recalculating Probabilities

When possible worlds are removed from the database as a result of feedback,
the probabilities of all remaining possible worlds have to be recalculated. Un-
fortunately, the databases from which the probabilistic information source
originated are typically unavailable. Therefore, re-integrating sources tak-
ing feedback into account is not a viable approach. Instead, we recalculate
the new probabilities based on the probabilities that the remaining possible
worlds had in the original database. Below, we argue that the correct way
of recalculation amounts to simple normalization.

Our notation P(T | PT ) suggests that we consider the database PT as
the universe. To emphasize this fact, we use the symbol U for the original
database. Eliminating possible worlds from this universe, means constructing
a (new) database PT ′. Let us first consider the case of a possible world T that
is eliminated. Its probability P(T | PT ′) is, of course, 0. In the other case,
we can calculate the probability of the possible world in the new universe
using the laws of conditional probabilities as follows:

P(T | PT ′) =
P(T ∧ PT ′)

P(PT ′)
=

P(PT ′ | T )P(T )

P(PT ′)

P(PT ′ | T ) = 1, because we are considering the case that T is a member
of the universe, hence the existence of the new universe given possible world
T is certain. The probability of the occurrence of the new database, i.e. the
new set of possible worlds, is P(PT ′) =

∑

T∈PWSPT′
P(T ). Note that P(T )

is the probability of T given our universe, hence P(T ) = P(T | U ). After
substitution we finally derive

P(T | PT ′) =

{

0 if T is eliminated
P(T |U )

∑

T∈PWS
PT′

P(T |U )
otherwise

As one can observe, the new probabilities can be obtained by simply
normalizing probabilities. However, the calculation given above shows that
normalizing probabilities semantically fits the possible world approach.
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6.3.5 Properties of Feedback

For validation purposes, we analyze some desirable properties of our user
feedback technique. This is a kind of analytical validation. For experimental
validation, we refer to Section 6.4.

Property 1 Given an original database PT and a resulting database PT ′

after user feedback, the amount of uncertainty does not grow, i.e.

PWSPT ′ ⊆ PWSPT

This property follows directly from Definitions 12 and 13.

Property 2 Given an original database PT and a resulting database PT ′

after user feedback, we observe that probabilities of possible worlds do not
decrease

∀T ∈ PWSPT ′ • P(T | PT ′) ≥ P(T | PT )

This property follows from the formula derived in Section 6.3.4. T ∈ PWSPT ′

means T is not eliminated. Since P(T | PT ) = P(T | U ), we conclude that
P(T | PT ′) is P(T | PT ) divided by some number. Since

(
∑

T∈PWSPT
P(T | PT )

)

=
1 and PWSPT ′ ⊆ PWSPT (Property 1), this number is guaranteed to be larger
than 0 and no larger than 1. Hence P(T | PT ′) ≥ P(T | PT ).

Property 3 The probabilities in the new database, P (T |PT ′), are indeed a
probabilistic distribution, i.e.

∑

T∈PWSPT ′

P(T | PT ′) = 1

The property follows directly from substituting the formula from Section 6.3.4:
∑

T∈PWSPT ′

P(T | PT ′) =

=
∑

T∈PWSPT ′

P(T | U )
∑

T∈PWSPT′
P(T | U )

=

∑

T∈PWSPT ′
P(T | U )

∑

T∈PWSPT ′
P(T | U )

= 1
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6.3.6 Give Feedback Carefully

We mentioned earlier that a database is a representation of the real world.
Although this is true, there is a need for caution, because the real world
changes, hence the observation of the real world can be different from the
observation at a later time. Furthermore, knowledge about the real world
is always incomplete. We denote the representation of the real world as
captured in the database by RW. The representation of the real world as
seen by the user at query time will be denoted by RWuser .

Due to the possible (non-)overlap between real world knowledge of the
database and the user, feedback to a query in terms of absolute statements
should be given with caution. We will show different scenarios of mismatch
in knowledge and their impact on the feedback process.

Figure 6.6 shows four examples of observations from the real world con-
tained by the database and the user. The examples are restricted to a set of
names of people with the same name. In this case we show all people named
“John”. In each example, the left figure shows people named “John” known
by the database and the right figure shows people named “John” known by
the user.

Figures 6.6(a) and 6.6(b) show an ideal situation, where both the database
and the user have knowledge about the same persons. Even though their
respective knowledge of these persons may differ, there is no significant mis-
match between database and user and the risk of wrong feedback is minimal.

Figures 6.6(c) and 6.6(d) show the situation where the knowledge of the
database and that of the user is different, but the number of real world
objects is equal. Here, the database has information on a person John2 and
the user doesn’t, while the user has information on a person John3 that is
unknown to the database. In other words RW 6= RWuser . Feedback about
the non-existence of John2 by this particular user could result in the deletion
of all possible worlds containing John2, while in fact that person does exist,
but is just not known to the user querying the database. The user should
only give such negative feedback if he is certain that it is universal, i.e. that
a database containing John2 is for certain incorrect.

Figures 6.6(e) and 6.6(f) as well as Figures 6.6(g) and 6.6(h) show situa-
tions where the number of real world objects known by the database is also
different than that known by the user. In such cases, feedback on queries
with aggregates are likely to result in unwanted results and should only be
given with special care. Suppose a user poses the query

let $grp := distinct-values(//person/name)

for $n in $grp

return
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<group> {

$grp,

count(//persons[./name eq $grp])

} </group>

to see how many people with the same name he knows, i.e. are contained in
the database. It could happen that the query result for a name is different
than he expects and he would like to give feedback on this.

For example, in the situation of Figures 6.6(g) and 6.6(h), the query
result for “John” is 2, but the user knows 3 persons named “John”. Here
the user should be aware that any feedback should not only be a universal
truth, but also something the database with its incomplete knowledge should
know. Giving the feedback that the query result should be 3 would eliminate
all possible worlds with less than or more than 3 persons, hence one could
possibly end up with an empty database.

Nevertheless, feedback can be a powerful mechanism in reducing uncer-
tainty in the database if users (or application developers) use feedback with
care, i.e. only universal truths or falsehoods, and only in cases where a
database with incomplete knowledge should have knowledge about it. In
other words, the database should have possessed the correct information.

6.4 Validation

Both knowledge rules and user feedback are validated in this section. We
implemented a prototype that could integrate documents using knowledge
rules and handle feedback from the user. We will discuss the prototype, the
experiments we performed and the results of those experiments.

6.4.1 Prototype

For simplicity, we did not implement full querying capabilities, but only a
function called treeContainment. This function checks if one XML tree, given
as the first argument, is contained within another XML tree (second argu-
ment). Using treeContainment we can support both negative and positive
feedback on simple path queries.

At feedback time, we extract all (probability, possible world) combina-
tions from the current database and check whether or not each possible world
meets the feedback criteria, i.e. whether the object is contained in the world
in case of positive feedback, or whether the object is absent for negative
feedback. The resulting database is represented by the set of possible worlds
that meet the criteria for which the probabilities are normalized.
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6.4.2 Experiments

In this section we will describe two experiments we performed using the pro-
totype. In the experiments we used the integration result of the two address
books shown in Figure 6.7. For readability, we sometimes use abbreviations
for element names in our trees, e.g. ln for lastname. In the experiments we
investigate the impact of both positive and negative feedback on the amount
of uncertainty in the database. As a measurement of the amount of uncer-
tainty, we count the number of possible worlds. Note that this number may
exaggerate the amount of uncertainty as perceived by a human. For example,
if a database contains three local uncertainties giving two possible values for
three independent attributes, then there are eight possible worlds.

In the experiments, we query the information source and give feedback
on the existence of a certain person, hence we don’t make any statements
about phone or room numbers. To be more precise, we execute the following
query

for $person in //person

return <name>{p/fn," ",$p/ln}</name>

For positive feedback, we confirm the existence of the following 5 persons.
1. Mark Hamburg
2. Allen King
3. Stan Choice
4. John Friend
5. Allen Kingship
To confirm one name, we use one feedback statement. As a result the

existence of all 5 people is confirmed after 5 positive feedback statements.
Although we have confirmed the existence of 5 people, note that we only
supported the fact that the name “Mark Hamburg” is used for a person in
the real world. The number of people having this name can not be deduced
from this feedback, nor the correctness of room or telephone numbers. Also,
the fact that in reality “Allen King” and “Allen Kingship” may actually be
referring to the same person, is no longer a possibility in one of the worlds
after the feedback.

For negative feedback, we start again with the original document and
indicate that any other name in the database is incorrect. Figure 6.8 shows
the number of possible worlds at the start of the experiment and after each of
the feedback statements, for both positive and negative feedback, but without
using any of the knowledge rules. Figure 6.9 shows the same experiment,
but now using knowledge rules at integration time to limit the number of
possibilities in the integrated document.
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A first observation is that Figures 6.8 and 6.9 confirm Property 1, because
after every iteration the number of possible worlds in the information source
decreases, or at least remains equal.

Experiment 1 In this first experiment we used no world knowledge during
the integration process. The result is a huge document containing 1815
possible worlds. Each possible world has the same, albeit small, probability.
Figure 6.8 shows the number of possible worlds after a number of iterations
in the case of negative feedback and positive feedback.

The fact that positive feedback has more influence on the number of
possible worlds than negative feedback can be explained as follows. At in-
tegration time, no world knowledge is used, therefore many possible worlds
are created. Most of these possible worlds contain possibilities that do not
reflect real world objects at all, and can perhaps best be described as “utter
nonsense”. In case of negative feedback, only those possible worlds would
be removed, that exactly contain a person as in the feedback. With positive
feedback, all possible worlds containing nonsense about the person subject to
the feedback are eliminated, so only a few remain. In other words, many pos-
sible worlds are dependent on positive feedback, whereas only some possible
worlds are dependent on negative feedback. The number of possible worlds
remaining after 5 iterations of positive feedback is just 19. These possible
worlds only contain persons really existing in the real world, only uncertainty
about phone or room numbers remain.

Experiment 2 Probabilistic information integration without any world
knowledge is not realistic in practice. Therefore, we repeat our experiment
for an integrated information source for which we used one simple generic
knowledge rule during integration to exclude the most nonsensical possibil-
ities. The rule states that person elements can only refer to the same real
world person if at least one of the attribute values is equal. The integrated
database for this experiment contained 39 possible worlds.

In this case, positive feedback scores better than negative feedback as well.
We can observe that with negative feedback, after 2 iterations, there is no
improvement on the information source anymore. The remaining uncertainty
is concerned with phone and room numbers. In case of positive feedback, only
three possible worlds remain. Also in this case, the remaining possible worlds
contain uncertainty that is associated with phone number and rooms and has
to do with the fact that “Mark Hamburg” has two possible phone numbers,
but it is also still possible that both instances of “Mark Hamburg” refer to
different people. All other uncertainty is removed, because it is certain that
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which people exist (and therefore also which people don’t exist).
For negative feedback we only indicated which people did not exist, but

still for all remaining people many possible phone numbers and room numbers
remain.

6.4.3 Results

In both experiments the number of possible worlds decreases and only those
possible worlds containing false information (according to the feedback) are
deleted. As a result, queries after feedback contain less false information.

The second experiment shows that using some very simple world knowl-
edge at integration time, decreased the number of possible worlds drastically.
With positive feedback on only the existence of people, without commenting
on phone numbers or rooms, the number of possible worlds that remained
was just 3.

The order of feedback for the end result, is not important. We could
have given the feedback statements in any order, ending up with the same
set of possible worlds. The reason is that all possible worlds containing or
lacking (for negative and positive feedback respectively) any of the indicated
answers, are removed from the set of possible worlds.
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<persons>

<person>

<firstname>Mark</firstname>

<lastname>Hamburg</lastname>

<phone>1010</phone>

<room>3300</room>

</person>

<person>

<firstname>Allen</firstname>

<lastname>King</lastname>

<phone>2020</phone>

<room>3122</room>

</person>

<person>

<firstname>Stan</firstname>

<lastname>Choice</lastname>

<phone>3030</phone>

<room>3035</room>

</person>

<person>

<firstname>John</firstname>

<lastname>Friend</lastname>

<phone>4040</phone>

<room>3333</room>

</person>

</persons>

(a) Document 1 (660 bytes)

<persons>

<person>

<firstname>Mark</firstname>

<lastname>Hamburg</lastname>

<phone>1010</phone>

<room>3301</room>

</person>

<person>

<firstname>Allen</firstname>

<lastname>Kingship</lastname>

<phone>2020</phone>

<room>3035</room>

</person>

</persons>

(b) Document 2 (366 bytes)

Figure 6.2: Address book documents used in experiments
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Chapter 7

Conclusions

7.1 Summary

In this thesis, we introduced an uncertainty model based on XML with prob-
ability theory as a basis to calculate and propagate confidence scores. We
introduced two measures to measure the amount of uncertainty present in
the data and to be able to compare systems. We defined the semantics of
queries on probabilistic XML in terms of possible worlds and showed how
queries are evaluated using this semantics. We also modified precision and
recall to be able to measure the quality of query results.

Using the probabilistic XML model, we showed that unattended integra-
tion at the data level is theoretically possible and results in correctly inte-
grated documents. The document resulting from this integration method
may contain many possible worlds. This large amount of possible worlds is
a risk when it comes to scalability of the integration solution. Two methods
are therefore introduced to reduce the amount of uncertainty. One method is
specifically geared towards the integration process and involved introducing
knowledge rules that eliminate possibilities during the integration process.
Another method to reduce the amount of uncertainty is by allowing the user
to provide feedback on query results. By indicating if a result is also the
answer to the query in the real world, possible worlds can be eliminated.
Either by specifying that the result is not an answer, and thus deleting all
possible worlds that contain this result, or reinforcing the fact that a result
is the answer to the specified query, thereby deleting all possible worlds that
did not return this result.

97
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7.2 Uncertainty Model

The uncertainty model introduced in this thesis supports

• probabilistic uncertainty

• mutual exclusiveness between elements

• dependency between elements

• sound semantics, being the possible world semantics

and is, as a result, an expressive means to capture, manipulate and query
uncertain data. This is, in part, caused by using XML as an underlying data
model. Since XML can be seen as a tree structure1 the XML model itself
already closely resembles a decision tree.

By storing probabilities locally, the choice points are kept as low in the
tree as possible, which gives a compact representation of the possible worlds.
By implementing the Directed Acyclic Graph structure proposed in chapter 3,
replication of values and subtrees can be avoided further compacting the
representation.

From the current systems known to us, none have either the expressiveness
that is offered with our model, nor the compact representation that is used.

To quantify the amount of uncertainty in a document and to be able to
compare between systems, we introduced two measures. The first measure,
uncertainty density, quantifies the amount of uncertainty in the data. The
second measure, answer decisiveness, quantifies the distinctiveness of the
most likely possibility, averaged over the entire document. We also adapted
precision and recall to be able to measure the quality of query answers.

7.3 Information Integration

In the area of information integration, we proposed to use uncertain data
during the integration process in order to make this process autonomous.
Theoretically, the integration process itself does indeed not need human in-
volvement. In case of any doubt about whether or not two elements refer
to the same real world object, the decision is postponed to query time. To
capture the uncertainty about the integration two sets of possible worlds are
dinstinguished, one where the elements are assumed to refer to the same real
world object and one where do they not.

1At least, when ID/IDREF is ignored
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By postponing the decision to query time, there is no need for human
involvement at integration time. Instead a human (or application) can give
feedback at query time. As a result, the integrated document can imme-
diately be meaningfully used. Another benefit of this method is that the
elements that are never in any query results will not need to be assessed by a
human. Therefore, the total amount of time is shorter than in the traditional
case and since the time needed is distributed over the queries, it is likely that
the burden of integration, as perceived by the end user, is much lower.

7.4 Scalability

In practice, the number of possibilities grows exponentially. This leads to
scalability problems. Although we have made some progress in this area
by using knowledge rules to rule out possibilities, a more intelligent Oracle

is needed to fully overcome the scalability problem. Also, using the DAG
encoding presented in chapter 3 will help in reducing the size of the document,
although not the number of possibilities. Querying using the possible world
representation is also a drawback in terms of scalability. We are currently
exploring possibilities to directly query the compact or DAG representation
and although some progress has been made in the direction, we still have work
in this direction before any conclusions can be drawn. We do expect that
scalability, given a smarter Oracle, the DAG construct and directly querying
the compact or DAG representation, can be kept within manageable limits
in practice.

7.5 Research Questions

In this section we answer the research questions posed in chapter 1. The first
question posed was

Which additions to existing data models are necessary to be able to support
uncertain data resulting from information integration.

In chapter 3 we have shown a new data model for probabilistic XML that
supports mutually exclusive possibilities for XML elements. In addition,
we have a construct to support dependencies and independencies. Together,
these constructs provide the mechanism to store probabilistic data that arises
from information integration.

The second research question posed was
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Which semantical foundation is needed to support intuitive querying on un-
certain data.

We have presented the possible world approach and explained how, using
this approach data stored using the probabilistic XML data model, can be
queried (chapter 4). Also a mechanism to reduce the amount of uncertainty,
namely user feedback, was presented that uses the possible world approach
to eliminate possibilities (chapter 6).

To be able to compare systems, we posed the following question

How can uncertainty contained in documents and answer quality be measured.

In chapter 3 we presented two measures, uncertain density and answer
decisiveness, to quantify the amount of uncertainty in the document and the
ease with which most likely answers can be selected. In addition, we modified
precision and recall to take into account the uncertainty associated with the
answers as a measure for answer quality. Those four measures can be used
to compare systems and query results.

The next research question addressed one of the possible applications
using uncertain data, data integration.

How can uncertain database technology be theoretically applied in data inte-
gration.

We demonstrated the use of uncertainty in data integration in chapter 5.
The integration method introduced there combines elements from source doc-
uments and when equality of the elements is uncertain, it stores this uncer-
tainty in the integrated document. As a result, the document is integrated
without involvement of the end user and decisions on equality are postponed,
while the document can directly be queried.

As a result of introducing uncertainty in data integration, the size of the
integrated documents becomes very large. The last question addresses that
problem.

How can uncertain data in data integration be practically used in data inte-
gration.

To allow the user to reduce the number of possibilities in the integrated
document, a feedback mechanism, presented in chapter 6, was introduced.
Users can give both positive and negative feedback on query results, reducing
the number of possible worlds represented by the database. We also intro-
duced knowledge rules that reduce the initial number of possibilities and
therefore the number of possible worlds in the integrated document.
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7.6 Future Research

In this thesis, we have designed a probabilistic data model, based on XML
and we have made a step in the direction of unattended information integra-
tion. Of course, the work does not end here and we have many directions for
future work. We will list the most important ones below.

Uncertainty Model and Database

• Directed Acyclic Graph
Although currently the theoretical groundwork for DAG constructions
is done, we still need to work on querying this DAG structure directly.
Without this work, querying is only possible when the DAG is converted
to the possible world representation.

• Supporting ignorance
Currently we do not take ignorance into account in the model. The
solution chosen in Trio is that for missing probability mass, a ques-
tionmark is placed on the x-tuple. This option, we already support
by adding an empty possibility node with the remaining probability.
We envision to support a solution more along the lines of coverage,
meaning that unspecified probability mass is used for uncovered ele-
ment values. However, this requires a fundamental extension of the
uncertainty model.

• Support for Continuous Uncertainty
The probabilistic model used in IMPrECISE only supports discrete prob-
abilistic distributions. Although some initial work has been done on
extending this to continuous probabilistic distributions, there is no full
theoretical foundation yet.

• Support for lineage
Much like the Trio system, we plan to keep track of where the data
came from. Especially in integration systems, this can be important
metadata about the integrated document. If, at a later stage, data
seems to be invalid, the original data can be tracked and recovered,
even if feedback has been applied that states the original, correct data,
was false.



102 CHAPTER 7. CONCLUSIONS

Information Integration

• Increase in Oracle performance
Our current Oracle performs slightly better than a truly doubtful Or-

acle, which would assign a uniform probability distribution to each of
the child nodes of a probability node. We expect that, using knowledge
from external information sources, like IMDb for movie data, or an on-
line phone book, for address information, our Oracle can be improved
significantly.

• Investigate the trade-off between a knowledgeable Oracle and relying
on user feedback to come to a fully integrated document. A stricter
Oracle will reduce the number of possibilities, but has a potential of
dismissing correct integration options resulting in lower quality query
answers, whereas a less restrictive Oracle will increase the size of the
document and putting more effort on the end user giving feedback at
query time.

• Combined Schema Integration and Data Integration mechanism
Our current prototypes on schema integration and data integration,
both work separately. It makes sense from a users perspective to com-
bine the two, since in most cases integrating the documents completely,
instead of just finding mappings, is the goal of this user anyway.

• Feedback on compact or DAG representation
We have presented the theoretical foundation for a feedback mechanism
in this thesis. Our current feedback mechanism, however, relies on the
possible world representation. Giving feedback directly on the compact
or DAG representation is currently an open question that will most
likely be solved when querying on the compact or DAG representation
is possible.
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Summary

In recent years, the need to support uncertain data has increased. Sensor
applications, for example, are dealing with the inherent uncertainty about
the readings of the sensors. Current database management systems are not
equipped to deal with this uncertainty, other than as a user defined attribute.
This forces the user of the DBMS to take on the responsibility of managing
the uncertainty associated with the data.

In this thesis, we present a new data model, based on XML that is ca-
pable of storing uncertainty about elements and subtrees. The XML data
model is extended in such a way, that probabilities can be associated with
the elements and subtrees, dependency and independency of elements can be
expressed and even the existence of entire elements or subtrees can be uncer-
tain. We give a sound semantical foundation for dealing with the uncertainty
associated with the data, and show how querying using this semantics works.

The probabilistic XML data model is used in an information integration
application. Decisions about equality are postponed if the integration system
is uncertain about equality. This uncertainty is stored using the probabilis-
tic XML data model, making the integration process itself unattended. The
amount of uncertainty arising from this integration can be large. We therefore
introduce knowledge rules that help deciding on equality during the integra-
tion phase. Using these rules, integrated documents contain less uncertainty
and are therefore smaller in size. We also introduced two measures with
which the amount of uncertainty in the document can be quantified. Un-
certainty density measures the amount of uncertainty in the database. The
second measure, answer decisiveness, quantifies the ease with which most
likely possibilities in query results can be chosen.

At a later stage, when the user is querying the information source, and
therefore already actively using the system, feedback can be provided on
query results. This feedback is explained in the same semantical setting as
querying. Feedback statements can either be positive, i.e. the query result
can be observed in the real world, or negative, i.e. the query result cannot
be observed in the real world. We show that using this feedback technique, if
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used with caution, reduces the amount of uncertainty and lets the information
source converge to a correctly integrated document. To measure the quality
of query results, we adapted precision and recall for probabilistic data in a
way that, for example incorrect answers with low probability do not have the
same negative impact as incorrect answers with a high probability.



Samenvatting

Recentelijk is de vraag naar het ondersteunen van onzekere data toegenomen.
Sensorapplicaties maken bijvoorbeeld gebruik van data die per definitie onzeker
is, omdat de sensoren die de data leveren dit ook zijn. Huidige databasesys-
temen bieden geen ondersteuning voor onzekere data, anders dan dat deze
onzekerheid als user-defined data opgeslagen kan worden. Op deze manier is
de gebruiker zelf echter ook verantwoordelijk voor het correct verwerken van
de onzekerheid.

In dit proefschrift presenteren we een nieuw, op XML gebaseerd data-
model, waarmee onzekerheid over elementen en subbomen kan worden opges-
lagen. Het XML data model is op een dusdanige manier uitgebreid dat
kansen aan elementen en subbomen kunnen worden gekoppeld. Ook kunnen
afhankelijkheden en onafhankelijkheden van elementen en zelfs het al dan
niet bestaan van deze elementen worden uitgedrukt. We geven een correcte
semantiek voor het werken met de onzekerheden die gekoppeld zijn aan de
data en laten zien hoe deze semantiek wordt gebruikt in het bevragen van
de data.

Het probabilistische XML data model wordt toegepast in een informatie
integratie applicatie. Keuzes over gelijkheid worden uitgesteld als het sys-
teem onzeker is over deze gelijkheid. Deze onzekerheid wordt met behulp
van kansen opgeslagen in het probabilistische XML datamodel, waardoor
het integratie proces zelf autonoom is. De hoeveelheid onzekerheid die op
deze manier ontstaat in het geintegreerde document, is groot. We introduc-
eren daarom kennisregels, die kunnen helpen bij het nemen van de beslissing
rondom gelijkheid. Door gebruik te maken van deze kennisregels, bevat het
geintegreerde document minder onzekerheid en wordt het dus kleiner. We
introduceren ook twee maten waarmee de hoeveelheid onzekerheid in het doc-
ument kan worden gequantificeerd. Uncertainty density meet de hoeveelheid
onzekerheid in het document, terwijl answer decisiveness het gemak waarmee
het meest waarschijnlijke antwoord kan worden gekozen, aangeeft.

Op een later moment, wanneer de gebruiker van het systeem toch al
gebruik maakt van het systeem, kan feedback op query resultaten worden
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gegeven. Deze feedback wordt gebruik in dezelfde semantische setting als de
bevragen van de data. Er zijn twee soorten feedback mogelijk, de eerste is
positieve feedback waarbij aangegeven wordt dat het resultaat daadwerke-
lijk in de echte wereld bestaat. De tweede manier van feedback is negatieve
feedback, waarmee aangegeven wordt dat het resultaat niet bestaat en dus
ook niet in de database hoort te staan. We laten zien dat door het ge-
bruik van deze feedback techniek, het geintegreerde document uiteindelijk
zal convergeren naar een correct geintegreerd document. Om de kwaliteit
van antwoorden te meten hebben we precision en recall aangepast om reken-
ing te houden met de kansen die horen bij de data, zodat bijvoorbeeld foute
antwoorden met een lage kans minder negatieve invloed hebben dan foute
antwoorden met een hoge kans.
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number of possible worlds, 29

quality measures, 29

real world object, 17
recall, 45, 46
representation

directed acyclic graph, 28

schema matching, 58
semantic equality problem, 76
semantics

possible world, 38
possible worlds, 17

semantics possible world, 37
subtree, 20
synchronization, 50

Trio, 25
Trio Query Language, 38
TriQL, 38
tuple level uncertainty, 26
type-1 uncertainty, 26
type-2 uncertainty, 25, 26

ULDB, 25
uncertain database, 17
uncertainty

attribute level, 26
context node dependency, 27
coverage, 27
tuple level, 26
type-1, 26
type-2, 26

user feedback, 83

versioning, 51

wrapper, 51, 54

x-tuple, 25, 38
XML node, 21



SIKS Dissertatiereeks
1998-1 Johan van den Akker (CWI)

DEGAS - An Active, Temporal Database of Autonomous Objects
1998-2 Floris Wiesman (UM)

Information Retrieval by Graphically Browsing Meta-Information
1998-3 Ans Steuten (TUD)

A Contribution to the Linguistic Analysis of Business Conversations
within the Language/Action Perspective

1998-4 Dennis Breuker (UM)
Memory versus Search in Games

1998-5 E.W.Oskamp (RUL)
Computerondersteuning bij Straftoemeting

1999-1 Mark Sloof (VU)
Physiology of Quality Change Modelling;
Automated modelling of Quality Change of Agricultural Products

1999-2 Rob Potharst (EUR)
Classification using decision trees and neural nets

1999-3 Don Beal (UM)
The Nature of Minimax Search

1999-4 Jacques Penders (UM)
The practical Art of Moving Physical Objects

1999-5 Aldo de Moor (KUB)
Empowering Communities: A Method for the Legitimate User-Driven
Specification of Network Information Systems

1999-6 Niek J.E. Wijngaards (VU)
Re-design of compositional systems

1999-7 David Spelt (UT)
Verification support for object database design

1999-8 Jacques H.J. Lenting (UM)
Informed Gambling: Conception and Analysis of a Multi-Agent
Mechanism for Discrete Reallocation.

2000-1 Frank Niessink (VU)
Perspectives on Improving Software Maintenance

2000-2 Koen Holtman (TUE)
Prototyping of CMS Storage Management

2000-3 Carolien M.T. Metselaar (UVA)
Sociaal-organisatorische gevolgen van kennistechnologie;
een procesbenadering en actorperspectief.

2000-4 Geert de Haan (VU)
ETAG, A Formal Model of Competence Knowledge for User Interface Design

2000-5 Ruud van der Pol (UM)
Knowledge-based Query Formulation in Information Retrieval.

2000-6 Rogier van Eijk (UU)
Programming Languages for Agent Communication

2000-7 Niels Peek (UU)
Decision-theoretic Planning of Clinical Patient Management

2000-8 Veerle Coup (EUR)
Sensitivity Analyis of Decision-Theoretic Networks

2000-9 Florian Waas (CWI)
Principles of Probabilistic Query Optimization

2000-10 Niels Nes (CWI)
Image Database Management System Design Considerations,
Algorithms and Architecture

2000-11 Jonas Karlsson (CWI)
Scalable Distributed Data Structures for Database Management

2001-1 Silja Renooij (UU)
Qualitative Approaches to Quantifying Probabilistic Networks

2001-2 Koen Hindriks (UU)
Agent Programming Languages: Programming with Mental Models

2001-3 Maarten van Someren (UvA)
Learning as problem solving



2001-4 Evgueni Smirnov (UM)
Conjunctive and Disjunctive Version Spaces with
Instance-Based Boundary Sets

2001-5 Jacco van Ossenbruggen (VU)
Processing Structured Hypermedia: A Matter of Style

2001-6 Martijn van Welie (VU)
Task-based User Interface Design

2001-7 Bastiaan Schonhage (VU)
Diva: Architectural Perspectives on Information Visualization

2001-8 Pascal van Eck (VU)
A Compositional Semantic Structure for Multi-Agent Systems Dynamics.

2001-9 Pieter Jan ’t Hoen (RUL)
Towards Distributed Development of Large Object-Oriented Models,
Views of Packages as Classes

2001-10 Maarten Sierhuis (UvA)
Modeling and Simulating Work Practice
BRAHMS: a multiagent modeling and simulation language
for work practice analysis and design

2001-11 Tom M. van Engers (VUA)
Knowledge Management:
The Role of Mental Models in Business Systems Design

2002-01 Nico Lassing (VU)
Architecture-Level Modifiability Analysis

2002-02 Roelof van Zwol (UT)
Modelling and searching web-based document collections

2002-03 Henk Ernst Blok (UT)
Database Optimization Aspects for Information Retrieval

2002-04 Juan Roberto Castelo Valdueza (UU)
The Discrete Acyclic Digraph Markov Model in Data Mining

2002-05 Radu Serban (VU)
The Private Cyberspace Modeling Electronic Environments
inhabited by Privacy-concerned Agents

2002-06 Laurens Mommers (UL)
Applied legal epistemology;
Building a knowledge-based ontology of the legal domain

2002-07 Peter Boncz (CWI)
Monet: A Next-Generation DBMS Kernel For Query-Intensive Applications

2002-08 Jaap Gordijn (VU)
Value Based Requirements Engineering: Exploring Innovative
E-Commerce Ideas

2002-09 Willem-Jan van den Heuvel(KUB)
Integrating Modern Business Applications with Objectified Legacy Systems

2002-10 Brian Sheppard (UM)
Towards Perfect Play of Scrabble

2002-11 Wouter C.A. Wijngaards (VU)
Agent Based Modelling of Dynamics: Biological and Organisational Applications

2002-12 Albrecht Schmidt (Uva)
Processing XML in Database Systems

2002-13 Hongjing Wu (TUE)
A Reference Architecture for Adaptive Hypermedia Applications

2002-14 Wieke de Vries (UU)
Agent Interaction: Abstract Approaches to Modelling, Programming and
Verifying Multi-Agent Systems

2002-15 Rik Eshuis (UT)
Semantics and Verification of UML Activity Diagrams for Workflow Modelling

2002-16 Pieter van Langen (VU)
The Anatomy of Design: Foundations, Models and Applications

2002-17 Stefan Manegold (UVA)
Understanding, Modeling, and Improving Main-Memory Database Performance

2003-01 Heiner Stuckenschmidt (VU)
Ontology-Based Information Sharing in Weakly Structured Environments

2003-02 Jan Broersen (VU)



Modal Action Logics for Reasoning About Reactive Systems
2003-03 Martijn Schuemie (TUD)

Human-Computer Interaction and Presence in Virtual Reality Exposure Therapy
2003-04 Milan Petkovic (UT)

Content-Based Video Retrieval Supported by Database Technology
2003-05 Jos Lehmann (UVA)

Causation in Artificial Intelligence and Law - A modelling approach
2003-06 Boris van Schooten (UT)

Development and specification of virtual environments
2003-07 Machiel Jansen (UvA)

Formal Explorations of Knowledge Intensive Tasks
2003-08 Yongping Ran (UM)

Repair Based Scheduling
2003-09 Rens Kortmann (UM)

The resolution of visually guided behaviour
2003-10 Andreas Lincke (UvT)

Electronic Business Negotiation: Some experimental studies on the interaction
between medium, innovation context and culture

2003-11 Simon Keizer (UT)
Reasoning under Uncertainty in Natural Language Dialogue using Bayesian Networks

2003-12 Roeland Ordelman (UT)
Dutch speech recognition in multimedia information retrieval

2003-13 Jeroen Donkers (UM)
Nosce Hostem - Searching with Opponent Models

2003-14 Stijn Hoppenbrouwers (KUN)
Freezing Language: Conceptualisation Processes across ICT-Supported Organisations

2003-15 Mathijs de Weerdt (TUD)
Plan Merging in Multi-Agent Systems

2003-16 Menzo Windhouwer (CWI)
Feature Grammar Systems - Incremental Maintenance of Indexes to
Digital Media Warehouses

2003-17 David Jansen (UT)
Extensions of Statecharts with Probability, Time, and Stochastic Timing

2003-18 Levente Kocsis (UM)
Learning Search Decisions

2004-01 Virginia Dignum (UU)
A Model for Organizational Interaction: Based on Agents, Founded in Logic

2004-02 Lai Xu (UvT)
Monitoring Multi-party Contracts for E-business

2004-03 Perry Groot (VU)
A Theoretical and Empirical Analysis of Approximation in Symbolic Problem Solving

2004-04 Chris van Aart (UVA)
Organizational Principles for Multi-Agent Architectures

2004-05 Viara Popova (EUR)
Knowledge discovery and monotonicity

2004-06 Bart-Jan Hommes (TUD)
The Evaluation of Business Process Modeling Techniques

2004-07 Elise Boltjes (UM)
Voorbeeldig onderwijs; voorbeeldgestuurd onderwijs, een opstap naar
abstract denken, vooral voor meisjes

2004-08 Joop Verbeek(UM)
Politie en de Nieuwe Internationale Informatiemarkt, Grensregionale
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